[1]张 炘,段传志,李铁林,等.切应力在血流动力学因素影响颅内动脉瘤形成和破裂中的作用[J].介入放射学杂志,2011,(04):319.
 ZHANG Xin,DUAN Chuan-zhi,LI Tie-lin,et al.The role of wall shear stress in the effect of hemodynamic factors on the formation, growth and rupture of intracranial aneurysm[J].journal interventional radiology,2011,(04):319.
点击复制

切应力在血流动力学因素影响颅内动脉瘤形成和破裂中的作用()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
期数:
2011年04期
页码:
319
栏目:
综 述
出版日期:
2011-04-30

文章信息/Info

Title:
The role of wall shear stress in the effect of hemodynamic factors on the formation, growth and rupture of intracranial aneurysm
作者:
张 炘 段传志 李铁林 龙霄翱 罗 斌 权 涛
510282  广州 南方医科大学珠江医院神经外科、广东省神经外科研究所
Author(s):

ZHANG Xin DUAN Chuan-zhi LI Tie-lin LONG Xiao-ao LUO Bin QUAN Tao.

Department of Neurosurgery, Zhujiang Hospital, Neurosurgery Institute of Guangdong Province, Southern Medical University, Guangzhou 510282, China
关键词:
颅内动脉瘤 血流动力学 壁面切应力
分类号:
R743.9
摘要:
颅内动脉瘤是颅内动脉管壁病理性局限性扩张产生的脑血管瘤样突起,位居脑血管疾病病因的第3位,是造成蛛网膜下腔出血的首位病因。颅内动脉瘤的发生、发展和破裂受多种因素影响,其病理机制尚不十分明确。近年来,随着计算机模拟重建、流体力学等诊断技术的不断进步,越来越多的研究表明,血流动力学因素在动脉瘤的形成、生长及破裂过程中起着重要作用。其中,切应力被认为起主导作用。本文通过回顾近年来国内外关于血流动力学的文献,就切应力在血流动力学因素影响颅内动脉瘤发病机制中的作用展开综述。

参考文献/References:

[1] Ishibashi T, Murayama Y, Urashima M, et al. Unruptured intracranial aneurysms: incidence of rupture and risk factors [J]. Stroke, 2009, 40: 313 - 316.
[2] Alnaes MS, Isaksen J, Mardal KA, et al. Computation of hemo-dynamics in the circle of Willis [J]. Stroke, 2007, 38: 2500 - 2505.
[3] Boussel L, Rayz V, McCulloch C, et al. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study[J]. Stroke, 2008, 39: 2997 - 3002.
[4] Broderick JP, Brown RD Jr, Sauerbeck L, et al. Greater rupture risk for familial as compared to sporadic unruptured intracranial aneurysms[J]. Stroke, 2009, 40: 1952 - 1957.
[5] Pierot L, Spelle L, Vitry F. ATENA Investigators. Similar safety in centers with low and high volumes of endovascular treatments for unruptured intracranial aneurysms: evaluation of the analysis of treatment by endovascular approach of nonruptured aneurysms study[J]. AJNR, 2010, 31: 1010 - 1014.
[6] Cebral JR, Sheridan M, Putman CM. Hemodynamics and bleb formation in intracranial aneurysms[J]. AJNR, 2010, 31: 304 - 310.
[7] Karmonik C, Yen C, Diaz O, et al. Temporal variations of wall shear stress parameters in intracranial aneurysms-importance of patient-specific inflow waveforms for CFD calculations[J]. Acta Neurochir (Wien), 2010, 152: 1391 - 1398.
[8] Kerber CW, Hecht ST, Knox K, et al. Flow dynamics in a fatal aneurysm of the basilar artery[J]. AJNR, 1996, 17: 1417 - 1421.
[9] Baek H, Jayaraman MV, Richardson PD, et al. Flow instability and wall shear stress variation in intracranial aneurysms[J]. J R Soc Interface, 2010, 7: 967 - 988.
[10] Paszkowiak JJ, Dardik A. Arterial wall shear stress: observations from the bench to the bedside [J]. Vasc Endovascular Surg, 2003, 37: 47 - 57.
[11] Reneman RS, Arts T, Hoeks AP. Wall shear stress-an important determinant of endothelial cell function and structure-in the arterial system in vivo. Discrepancies with theory[J]. J Vasc Res, 2006, 43: 251 - 269.
[12] Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells[J]. J Biomech, 2005, 38: 1949 - 1971.
[13] Hassan T, Timofeev EV, Saito T, et al. Computational replicas: anatomic reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography[J]. AJNR, 2004, 25: 1356 - 1365.
[14] Meng H, Wang Z, Hoi Y, et al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation[J]. Stroke, 2007, 38: 1924 - 1931.
[15] Cebral JR, Castro MA, Burgess JE, et al. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models[J]. AJNR, 2005, 26: 2550 - 2559.
[16] Shojima M, Oshima M, Takagi K, et al. Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms[J]. Stroke, 2005, 36: 1933 - 1938.
[17] Takeuchi S, Karino T. Flow patterns and distributions of fluid velocity and wall shear stress in the human internal carotid and middle cerebral arteries[J]. World Neurosurg, 2010, 73: 174 - 185.
[18] Jou LD, Lee DH, Morsi H, et al. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery [J]. AJNR, 2008, 29: 1761 - 1767.
[19] Mitchell GF, Parise H, Vita JA, et al. Local shear stress and brachial artery flow-mediated dilation: the Framingham Heart Study [J]. Hypertension, 2004, 44: 134 - 139.
[20] Utter B, Rossmann JS. Numerical simulation of saccular aneury-sm hemodynamics: influence of morphology on rupture risk[J]. J Biomech, 2007, 40: 2716 - 2722.
[21] Castro MA, Putman CM, Cebral JR. Computational fluid dyna-mics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics[J]. AJNR, 2006, 27: 1703 - 1709.
[22] Hoi Y, Woodward SH, Kim M, et al. Validation of CFD simul-ations of cerebral aneurysms with implication of geometric variations[J]. J Biomech Eng, 2006, 128: 844 - 851.
[23] Hoi Y, Meng H, Woodward SH, et al. Effects of arterial geo-metry on aneurysm growth: three-dimensional computational fluid dynamics study[J]. J Neurosurg, 2004, 101: 676 - 681.
[24] Castro MA, Putman CM, Cebral JR. Patient-specific computa-tional fluid dynamics modeling of anterior communicating artery aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries [J]. AJNR, 2006, 27: 2061 - 2068.
[25] Castro MA, Putman CM, Cebral JR. Patient-specific computa-tional modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images[J]. Acad Radiol, 2006, 13: 811 - 821.
[26] Shojima M, Oshima M, Takagi K, et al. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms[J]. Stroke, 2004, 35: 2500 - 2505.
[27] Szymanski MP, Metaxa E, Meng H, et al. Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation[J]. Ann Biomed Eng, 2008, 36: 1681 - 1689.
[28] Ernemann UU, Gronewaller E, Duffner FB, et al. Influence of geometric and hemodynamic parameters on aneurysm visualization during three-dimensional rotational angiography: an in vitro study[J]. AJNR, 2003, 24: 597 - 603.
[29] Hassan T, Timofeev EV, Saito T, et al. A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture[J]. J Neurosurg, 2005, 103: 662 - 680.
[30] Forget TR Jr, Benitez R, Veznedaroglu E, et al. A review of size and location of ruptured intracranial aneurysm[J]. Neurosurgery, 2001, 49: 1322 - 1325.
[31] Baharoglu MI, Schirmer CM, Hoit DA, et al. Aneurysm inflow-angle as a discriminant for rupture in sidewall cerebral aneurysms: morphometric and computational fluid dynamic analysis[J]. Stroke, 2010, 41: 1423 - 1430.
[32] Rohde S, Lahmann K, Beck J, et al. Fourier analysis of intracranial aneurysms: towards an objective and quantitative evaluation of the shape of aneurysms[J]. Neuroradiology, 2005, 47: 121 - 126.
[33] Raghavan ML, Ma B, Harbaugh RE. Quantified aneurysm shape and rupture risk[J]. J Neurosurg, 2005, 102: 355 - 362.
[34] Ahn S, Shin D, Tateshima S, et al. Fluid-induced wall shear stress in anthropomorphic brain aneurysm models: MR phase-contrast study at 3 T[J]. J Magn Reson Imaging, 2007, 25: 1120 - 1130.
[35] Meng H, Swartz DD, Wang Z, et al. A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo[J]. Neurosurgery, 2006, 59: 1094 - 1100.
[36] 穆士卿, 杨新健, 张 莹, 等. 颅内典型囊性动脉瘤的三维数值模拟及血流动力学分析[J]. 中国微侵袭神经外科杂志, 2009, 14: 312 - 315.
[37] Sakamoto N, Saito N, Han X, et al. Effect of spatial gradient in fluid shear stress on morphological changes in endothelial cells in response to flow[J]. Biochem Biophys Res Commun, 2010, 395: 264 - 269.
[38] Pentimalli L, Modesti A, Vignati A, et al. Role of apoptosis in intracranial aneurysm rupture[J]. J Neurosurg, 2004, 101: 1018 - 1025.
[39] 鲁 刚, 黄 磊, 张晓龙, 等. 颅内动脉瘤壁切应力与动脉瘤破裂关系的初步研究—基于患者的三维计算机模拟[J]. 介入放射学杂志, 2009, 18: 568 - 571.

相似文献/References:

[1]吴曦,刘建民,黄清海,等.第一代Matrix弹簧圈治疗颅内动脉瘤的安全性及中长期随访结果分析[J].介入放射学杂志,2008,(06):384.
 WU Xi,LIU Jianmin,HUANG Qinghai,et al.Middle and long-term follow-up of intracranial aneurysms treated with Matrix detachable coils[J].journal interventional radiology,2008,(04):384.
[2]杨志刚,刘建民,许奕,等.新型可回撤自膨胀支架在颅内动脉瘤治疗中的应用[J].介入放射学杂志,2008,(07):459.
 YANG Zhigang,LIU Jianmin,XU Yi,et al.Application of a novel retrievable self-expanding stent in intracranial aneurysm treatment[J].journal interventional radiology,2008,(04):459.
[3]潘奇,刘建民,许奕,等.颈内动脉前壁动脉瘤支架结合弹簧圈栓塞术后再出血:病例报道[J].介入放射学杂志,2008,(08):560.
 PAN Qi,LIU Jianmin,XU Yi,et al.Rebleeding after stenting and coil embolization of an aneurysm in anterior wall of the internal carotid artery[J].journal interventional radiology,2008,(04):560.
[4]白卫星,姜喜锋,李天晓,等.Neuroform自膨式支架结合弹簧圈栓塞颅内宽颈动脉瘤[J].介入放射学杂志,2008,(08):539.
 BAI Weixing,JIANG Xifeng,LI Tianxiao,et al.Treatment of intracranial wide neck aneurysm with neuroform self-expanding stent combined with spring coils[J].journal interventional radiology,2008,(04):539.
[5]张鹤,李明华,方淳,等.3.0T时间飞跃法MRA诊断颅内动脉瘤—与DSA对照[J].介入放射学杂志,2008,(09):618.
 ZHANG He,LI Minghua,FANG Chun,et al.Detection of intracranial aneurysm with time-of-flight MRA at 3.0Tesla:comparison with digital subtraction angiography[J].journal interventional radiology,2008,(04):618.
[6]杨志刚,刘建民.单纯网孔支架植入治疗颅内动脉瘤的研究进展[J].介入放射学杂志,2008,(10):745.
 YANG Zhigang,LIU Jianmin.Simple mesh stent placement for treating intracranial aneurysm:progress in research[J].journal interventional radiology,2008,(04):745.
[7]吴曦,刘建民.第一代Martix可吸收聚合物弹簧圈治疗颅内动脉瘤的研制及应用现状[J].介入放射学杂志,2008,(11):828.
 WU Xi,LIU Jianmin.The present development and status of the first generation of Matrix bioabsorbable poly-meric material coil in the treatment of intracranial aneurysms[J].journal interventional radiology,2008,(04):828.
[8]李强,洪波,刘建民.2009世界神经外科和神经介入大会掠影[J].介入放射学杂志,2010,(02):154.
 LI Qiang,HONG Bo,LIU Jianmin.A glance at Live Interventional Neuroradiology&Neurosurgery Course2009[J].journal interventional radiology,2010,(04):154.
[9]黄海东,赵凯,顾建文,等.新型颅内支架Enterprise结合水解脱弹簧圈栓塞治疗颅内微小宽颈动脉瘤[J].介入放射学杂志,2010,(02):91.
 HUANG Haidong,ZHAO Kai,GU Jianwen,et al.A novel intracranial Enterprise stent together with coils for the treatment of very small intracranial wide-necked aneurysms[J].journal interventional radiology,2010,(04):91.
[10]施万印,李永东,李明华,等.弹簧圈再栓塞或覆膜支架治疗颅内动脉瘤复发[J].介入放射学杂志,2010,(04):269.
 SHI Wanyin,LI YongDong,LI MingHua,et al.Endovascular treatment of recurrent intracranial aneurysms with re-coiling or covered stents[J].journal interventional radiology,2010,(04):269.

备注/Memo

备注/Memo:
收稿日期:20100814
更新日期/Last Update: 2011-04-30