[1]杨延杰,马靖嶔,颜志平.可视化微球研究进展[J].介入放射学杂志,2024,33(02):115-121.
 YANG Yanjie,MA Jingqin,YAN Zhiping..Research advances in visualized microspheres[J].journal interventional radiology,2024,33(02):115-121.
点击复制

可视化微球研究进展()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
33
期数:
2024年02
页码:
115-121
栏目:
专论
出版日期:
2024-03-08

文章信息/Info

Title:
Research advances in visualized microspheres
作者:
杨延杰 马靖嶔 颜志平
Author(s):
YANG Yanjie MA Jingqin YAN Zhiping.
Department of Interventional Radiology, Zhongshan Hospital, Fudan University (Shanghai Institute of Medical Imaging), Shanghai 200030, China
关键词:
【关键词】 微球可视化 血管介入 影像学设备
文献标志码:
A
摘要:
【摘要】 微球是血管介入手术中常用的栓塞材料,然而受到制作材料的限制,几乎所有的微球都无法在体内被影像学设备检测到。微球的可视化是指在微球中加入各种显影材料,使之具备在影像学设备下显影的能力。为了优化栓塞过程和便于术后随访,目前已报道多种可视化微球,如X线可视化微球、MRI可视化微球、超声可视化微球等。临床经验表明,这些微球可以提供真实的空间分布和实时的术中反馈,有助于优化、个性化以及改进血管栓塞技术。本文就上述可视化微球的研究进展进行综述。

参考文献/References:

[1] 龚元川,邵国良. 载药微球的理化特性及其在肝癌介入治疗中的应用进展[J]. 介入放射学杂志, 2022, 31:616-622.
[2] Jia GR, van Valkenburgh J, Chen AZ, et al. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma[J]. Wiley Inter-discip Rev Nanomed Nanobiotechnol, 2022, 14: e1749.
[3] Lee SH, Lin CY, Hsu YC, et al. Comparison of the efficacy of two microsphere embolic agents for transcatheter arterial chemo-embolization in hepatocellular carcinoma patients[J]. Cancer Res Treat, 2020, 52: 24-30.
[4] 马婧嶔,颜志平.肝癌介入治疗进一步思考[J].介入放射学杂志,2019,28:507-510.
[5] Hong K, Khwaja A, Liapi E, et al. New intra-arterial drug delivery system for the treatment of liver cancer: preclinical assessment in a rabbit model of liver cancer[J]. Clin Cancer Res, 2006, 12: 2563-2567.
[6] Sharma KV, Dreher MR, Tang Y, et al. Development of “imageable” beads for transcatheter embolotherapy[J]. J Vasc Interv Radiol , 2010, 21: 865-876.
[7] Jordan O, Denys A, De Baere T, et al. Comparative study of chemoembolization loadable beads: in vitro drug release and physical properties of DC bead and hepasphere loaded with doxorubicin and irinotecan[J]. J Vasc Interv Radiol, 2010, 21: 1084-1090.
[8] Johnson CG, Tang Y, Beck A, et al. Preparation of radiopaque drug-eluting beads for transcatheter chemoembolization[J]. J Vasc Interv Radiol, 2016, 27: 117-126.
[9] Hu J, Albadawi H, Chong BW, et al. Advances in biomaterials and technologies for vascular embolization[J]. Adv Mater, 2019, 31: e1901071.
[10] Wang D, Wu Q, Guo R, et al. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization[J]. Nanoscale, 2021, 13: 8817-8836.
[11] Sang L, Luo D, Wei Z, et al. X-ray visible and doxorubicin-loaded beads based on inherently radiopaque poly(lactic acid)-polyurethane for chemoembolization therapy[J]. Mater Sci Eng C Mater Biol Appl, 2017, 75: 1389-1398.
[12] Li J, Wang J, Li J, et al. Fabrication of Fe3O4@PVA microspheres by one-step electrospray for magnetic resonance imaging during transcatheter arterial embolization[J]. Acta Biomater, 2021, 131: 532-543.
[13] Gupta T, Virmani S, Neidt TM, et al. MR tracking of iron-labeled glass radioembolization microspheres during transcatheter delivery to rabbit VX2 liver tumors: feasibility study[J]. Radiology, 2008, 249: 845-854.
[14] Wang H, Qin XY, Li ZY, et al. Preparation and evaluation of MRI detectable poly(acrylic acid) microspheres loaded with superpa-ramagnetic iron oxide nanoparticles for transcatheter arterial embolization[J]. Int J Pharm, 2016, 511: 831-839.
[15] Lee KH, Liapi E, Vossen JA, et al. Distribution of iron oxide-containing embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: evaluation with MR imaging and implication for therapy[J]. J Vasc Interv Radiol, 2008, 19: 1490-1496.
[16] Kim DH, Chen J, Omary RA, et al. MRI visible drug eluting magnetic microspheres for transcatheter intra-arterial delivery to liver tumors[J]. Theranostics, 2015, 5: 477-488.
[17] Cilliers R, Song Y, Kohlmeir EK, et al. Modification of embolic-PVA particles with MR contrast agents[J]. Magn Reson Med, 2008, 59: 898-902.
[18] van Elk M, Ozbakir B, Barten-Rijbroek AD, et al. Alginate microspheres containing temperature sensitive liposomes(TSL) for MR-guided embolization and triggered release of doxorubicin[J]. PLoS One, 2015, 10: e0141626.
[19] Yang Y, Yang R, Zhang B, et al. Preparation and investigation of a novel iodine-based visible polyvinyl alcohol embolization material[J]. J Interv Med, 2022, 5: 72-78.
[20] Duran R, Sharma K, Dreher MR, et al. A novel inherently radiopaque bead for transarterial embolization to treat liver cancer : a pre-clinical study[J]. Theranostics, 2016, 6: 28-39.
[21] Sharma KV, Bascal Z, Kilpatrick H, et al. Long-term biocompa-tibility, imaging appearance and tissue effects associated with delivery of a novel radiopaque embolization bead for image-guided therapy[J]. Biomaterials, 2016, 103: 293-304.
[22] Levy EB,Krishnasamy VP,Lewis AL, et al. First human experience with directly image-able iodinated embolization microbeads[J]. Cardiovasc Intervent Radiol, 2016, 39: 1177-1186.
[23] 王文焕. X光显影碘代聚乳酸介入栓塞材料合成与性能[D]. 大连:大连理工大学, 2019.
[24] Mikhail AS, Pritchard WF, Negussie AH, et al. Mapping drug dose distribution on CT images following transarterial chemoem-bolization with radiopaque drug-eluting beads in a rabbit tumor model[J]. Radiology, 2018, 289: 396-404.
[25] Choi JW, Park JH, Cho HR, et al. Sorafenib and 2,3,5-triiodobenzoic acid-loaded imageable microspheres for transarterial embolization of a liver tumor[J]. Sci Rep, 2017, 7: 554.
[26] Dreher MR, Sharma KV, Woods DL, et al. Radiopaque drug-eluting beads for transcatheter embolotherapy: experimental study of drug penetration and coverage in swine[J]. J Vasc Interv Radiol, 2012, 23: 257-264.
[27] Vogt K, Aryan L, Stealey S, et al. Microfluidic fabrication of imageable and resorbable polyethylene glycol microspheres for catheter embolization[J]. J Biomed Mater Res A, 2022, 110: 131-142.
[28] Barnett BP, Kraitchman DL, Lauzon C, et al. Radiopaque alginate microcapsules for X-ray visualization and immunoprotection of cellular therapeutics[J]. Mol Pharm, 2006, 3: 531-538.
[29] Wang Q, Qian K, Liu S, et al. X-ray visible and uniform alginate microspheres loaded with in situ synthesized BaSO4 nanoparticles for in vivo transcatheter arterial embolization[J]. Biomacromolecules, 2015, 16: 1240-1246.
[30] Li X, Ji X, Chen K, et al. Immobilized thrombin on X-ray radiopaque polyvinyl alcohol/chitosan embolic microspheres for precise localization and topical blood coagulation[J]. Bioact Mater, 2021, 6: 2105-2119.
[31] Yi Z, Sun Z, Shen Y, et al. The sodium hyaluronate microspheres fabricated by solution drying for transcatheter arterial embolization[J]. J Mater Chem B, 2022, 10: 4105-4114.
[32] Thanoo BC, Jayakrishnan A. Tantalum loaded silicone microspheres as particulate emboli[J]. J Microencapsul, 1991, 8: 95-101.
[33] Horikawa M, Ishikawa M, Uchida BT, et al. Practical Tantalum coating of microspheres for experimental visualization under fluoroscopy and CT[J]. Vasc Interv Radiol , 2016, 27: 127-132.
[34] Zeng J, Li L, Zhang H, et al. Radiopaque and uniform alginate microspheres loaded with Tantalum nanoparticles for real-time imaging during transcatheter arterial embolization[J]. Theranostics, 2018, 8: 4591-4600.
[35] Malone CD, Fetzer DT, Monsky WL, et al. Contrast-enhanced US for the interventional radiologist: current and emerging applications[J]. Radiographics, 2020, 40: 562-588.
[36] Chong WK, Papadopoulou V, Dayton PA. Imaging with ultrasound contrast agents: current status and future[J]. Abdom Radiol(NY), 2018, 43: 762-772.
[37] Deng XQ, Zhang HB, Wang GF, et al. Colon-specific microspheres loaded with puerarin reduce tumorigenesis and metastasis in colitis-associated colorectal cancer[J]. Int J Pharm, 2019, 570: 118644.
[38] Foulds WS, Kek WK, Luu CD, et al. A porcine model of selective retinal capillary closure induced by embolization with fluorescent microspheres[J]. Invest Ophthalmol Vis Sci, 2010, 51: 6700-6709.
[39] Khalin I, Heimburger D, Melnychuk N, et al. Ultrabright fluorescent polymeric nanoparticles with a stealth pluronic shell for live tracking in the mouse brain[J]. ACS Nano, 2020, 14: 9755-9770.
[40] Patil SB, Kaul A, Babbar A, et al. In vivo evaluation of alginate microspheres of carvedilol for nasal delivery[J]. J Biomed Mater Res B Appl Biomater, 2012, 100: 249-255.
[41] 宋 晟.多功能医学显影探针的自组装途径构建及生物医学应用研究[D]. 上海:上海交通大学, 2015.
[42] Hagit A, Soenke B, Johannes B, et al. Synthesis and characte-rization of dual modality(CT/MRI) core-shell microparticles for embolization purposes[J]. Biomacromolecules, 2010, 11: 1600-1607.
[43] Bartling SH, Budjan J, Aviv H, et al. First multimodal embolization particles visible on X-ray/computed tomography and magnetic resonance imaging[J]. Invest Radiol, 2011, 46: 178-186.
[44] Sommer CM,Stampfl U,Bellemann N,et al. Multimodal visibility(radiography, computed tomography, and magnetic resonance imaging) of microspheres for transarterial embolization tested in porcine kidneys[J]. Invest Radiol, 2013, 48: 213-222.
[45] Stampfl U, Sommer CM, Bellemann N, et al. Multimodal visibility of a modified polyzene-F-coated spherical embolic agent for liver embolization: feasibility study in a porcine model[J]. J Vasc Interv Radiol, 2012, 23: 1225-1231.
[46] Liu KL,Jin ZC,Hu XL, et al. A biodegradable multifunctional porous microsphere composed of carrageenan for promoting imageable trans-arterial chemoembolization[J]. Int J Biol Macromol, 2020, 142: 866-878.
[47] Stella M, Braat AJAT, van Rooij R, et al. Holmium-166 radioe-mbolization: current status and future prospective[J]. Cardiovasc Intervent Radiol, 2022, 45: 1634-1645.

相似文献/References:

[1]游建雄,王精兵,艾松涛,等.微球联合碘油栓塞治疗肝癌的近期疗效分析 [J].介入放射学杂志,2017,(06):531.
 YOU Jianxiong,WANG Jingbing,AI Songtao,et al.TACE by using microspheres and lipiodol for the treatment of hepatocellular carcinoma: analysis of short- term efficacy[J].journal interventional radiology,2017,(02):531.
[2]何逸玮,邵国良.可视化栓塞微球的制备及研究进展[J].介入放射学杂志,2021,30(09):861.
 HE Yiwei,SHAO Guoliang..Preparation of radiopaque embolization microspheres and its research progress[J].journal interventional radiology,2021,30(02):861.
[3]张云晓,孙振海,张梦贺,等.基于引文空间的中医药治疗经皮冠状动脉介入术后患者的可视化分析[J].介入放射学杂志,2024,33(10):1064.
 ZHANG Yunxiao,SUN Zhenhai,ZHANG Menghe,et al.CiteSpace-based visualization analysis of traditional Chinese medicine treatment for patients after receiving percutaneous coronary intervention[J].journal interventional radiology,2024,33(02):1064.

备注/Memo

备注/Memo:
(收稿日期:2022-12-01)
(本文编辑:茹 实)
更新日期/Last Update: 2024-03-08