[1]杨延杰,马靖嶔,颜志平.可视化微球研究进展[J].介入放射学杂志,2024,33(02):115-121.
 YANG Yanjie,MA Jingqin,YAN Zhiping..Research advances in visualized microspheres[J].journal interventional radiology,2024,33(02):115-121.
点击复制

可视化微球研究进展()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
33
期数:
2024年02
页码:
115-121
栏目:
专论
出版日期:
2024-03-08

文章信息/Info

Title:
Research advances in visualized microspheres
作者:
杨延杰 马靖嶔 颜志平
Author(s):
YANG Yanjie MA Jingqin YAN Zhiping.
Department of Interventional Radiology, Zhongshan Hospital, Fudan University (Shanghai Institute of Medical Imaging), Shanghai 200030, China
关键词:
【关键词】 微球可视化 血管介入 影像学设备
文献标志码:
A
摘要:
【摘要】 微球是血管介入手术中常用的栓塞材料,然而受到制作材料的限制,几乎所有的微球都无法在体内被影像学设备检测到。微球的可视化是指在微球中加入各种显影材料,使之具备在影像学设备下显影的能力。为了优化栓塞过程和便于术后随访,目前已报道多种可视化微球,如X线可视化微球、MRI可视化微球、超声可视化微球等。临床经验表明,这些微球可以提供真实的空间分布和实时的术中反馈,有助于优化、个性化以及改进血管栓塞技术。本文就上述可视化微球的研究进展进行综述。

参考文献/References:

[1] 龚元川,邵国良. 载药微球的理化特性及其在肝癌介入治疗中的应用进展[J]. 介入放射学杂志, 2022, 31:616-622.
[2] Jia GR, van Valkenburgh J, Chen AZ, et al. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma[J]. Wiley Inter-discip Rev Nanomed Nanobiotechnol, 2022, 14: e1749.
[3] Lee SH, Lin CY, Hsu YC, et al. Comparison of the efficacy of two microsphere embolic agents for transcatheter arterial chemo-embolization in hepatocellular carcinoma patients[J]. Cancer Res Treat, 2020, 52: 24-30.
[4] 马婧嶔,颜志平.肝癌介入治疗进一步思考[J].介入放射学杂志,2019,28:507-510.
[5] Hong K, Khwaja A, Liapi E, et al. New intra-arterial drug delivery system for the treatment of liver cancer: preclinical assessment in a rabbit model of liver cancer[J]. Clin Cancer Res, 2006, 12: 2563-2567.
[6] Sharma KV, Dreher MR, Tang Y, et al. Development of “imageable” beads for transcatheter embolotherapy[J]. J Vasc Interv Radiol , 2010, 21: 865-876.
[7] Jordan O, Denys A, De Baere T, et al. Comparative study of chemoembolization loadable beads: in vitro drug release and physical properties of DC bead and hepasphere loaded with doxorubicin and irinotecan[J]. J Vasc Interv Radiol, 2010, 21: 1084-1090.
[8] Johnson CG, Tang Y, Beck A, et al. Preparation of radiopaque drug-eluting beads for transcatheter chemoembolization[J]. J Vasc Interv Radiol, 2016, 27: 117-126.
[9] Hu J, Albadawi H, Chong BW, et al. Advances in biomaterials and technologies for vascular embolization[J]. Adv Mater, 2019, 31: e1901071.
[10] Wang D, Wu Q, Guo R, et al. Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization[J]. Nanoscale, 2021, 13: 8817-8836.
[11] Sang L, Luo D, Wei Z, et al. X-ray visible and doxorubicin-loaded beads based on inherently radiopaque poly(lactic acid)-polyurethane for chemoembolization therapy[J]. Mater Sci Eng C Mater Biol Appl, 2017, 75: 1389-1398.
[12] Li J, Wang J, Li J, et al. Fabrication of Fe3O4@PVA microspheres by one-step electrospray for magnetic resonance imaging during transcatheter arterial embolization[J]. Acta Biomater, 2021, 131: 532-543.
[13] Gupta T, Virmani S, Neidt TM, et al. MR tracking of iron-labeled glass radioembolization microspheres during transcatheter delivery to rabbit VX2 liver tumors: feasibility study[J]. Radiology, 2008, 249: 845-854.
[14] Wang H, Qin XY, Li ZY, et al. Preparation and evaluation of MRI detectable poly(acrylic acid) microspheres loaded with superpa-ramagnetic iron oxide nanoparticles for transcatheter arterial embolization[J]. Int J Pharm, 2016, 511: 831-839.
[15] Lee KH, Liapi E, Vossen JA, et al. Distribution of iron oxide-containing embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: evaluation with MR imaging and implication for therapy[J]. J Vasc Interv Radiol, 2008, 19: 1490-1496.
[16] Kim DH, Chen J, Omary RA, et al. MRI visible drug eluting magnetic microspheres for transcatheter intra-arterial delivery to liver tumors[J]. Theranostics, 2015, 5: 477-488.
[17] Cilliers R, Song Y, Kohlmeir EK, et al. Modification of embolic-PVA particles with MR contrast agents[J]. Magn Reson Med, 2008, 59: 898-902.
[18] van Elk M, Ozbakir B, Barten-Rijbroek AD, et al. Alginate microspheres containing temperature sensitive liposomes(TSL) for MR-guided embolization and triggered release of doxorubicin[J]. PLoS One, 2015, 10: e0141626.
[19] Yang Y, Yang R, Zhang B, et al. Preparation and investigation of a novel iodine-based visible polyvinyl alcohol embolization material[J]. J Interv Med, 2022, 5: 72-78.
[20] Duran R, Sharma K, Dreher MR, et al. A novel inherently radiopaque bead for transarterial embolization to treat liver cancer : a pre-clinical study[J]. Theranostics, 2016, 6: 28-39.
[21] Sharma KV, Bascal Z, Kilpatrick H, et al. Long-term biocompa-tibility, imaging appearance and tissue effects associated with delivery of a novel radiopaque embolization bead for image-guided therapy[J]. Biomaterials, 2016, 103: 293-304.
[22] Levy EB,Krishnasamy VP,Lewis AL, et al. First human experience with directly image-able iodinated embolization microbeads[J]. Cardiovasc Intervent Radiol, 2016, 39: 1177-1186.
[23] 王文焕. X光显影碘代聚乳酸介入栓塞材料合成与性能[D]. 大连:大连理工大学, 2019.
[24] Mikhail AS, Pritchard WF, Negussie AH, et al. Mapping drug dose distribution on CT images following transarterial chemoem-bolization with radiopaque drug-eluting beads in a rabbit tumor model[J]. Radiology, 2018, 289: 396-404.
[25] Choi JW, Park JH, Cho HR, et al. Sorafenib and 2,3,5-triiodobenzoic acid-loaded imageable microspheres for transarterial embolization of a liver tumor[J]. Sci Rep, 2017, 7: 554.
[26] Dreher MR, Sharma KV, Woods DL, et al. Radiopaque drug-eluting beads for transcatheter embolotherapy: experimental study of drug penetration and coverage in swine[J]. J Vasc Interv Radiol, 2012, 23: 257-264.
[27] Vogt K, Aryan L, Stealey S, et al. Microfluidic fabrication of imageable and resorbable polyethylene glycol microspheres for catheter embolization[J]. J Biomed Mater Res A, 2022, 110: 131-142.
[28] Barnett BP, Kraitchman DL, Lauzon C, et al. Radiopaque alginate microcapsules for X-ray visualization and immunoprotection of cellular therapeutics[J]. Mol Pharm, 2006, 3: 531-538.
[29] Wang Q, Qian K, Liu S, et al. X-ray visible and uniform alginate microspheres loaded with in situ synthesized BaSO4 nanoparticles for in vivo transcatheter arterial embolization[J]. Biomacromolecules, 2015, 16: 1240-1246.
[30] Li X, Ji X, Chen K, et al. Immobilized thrombin on X-ray radiopaque polyvinyl alcohol/chitosan embolic microspheres for precise localization and topical blood coagulation[J]. Bioact Mater, 2021, 6: 2105-2119.
[31] Yi Z, Sun Z, Shen Y, et al. The sodium hyaluronate microspheres fabricated by solution drying for transcatheter arterial embolization[J]. J Mater Chem B, 2022, 10: 4105-4114.
[32] Thanoo BC, Jayakrishnan A. Tantalum loaded silicone microspheres as particulate emboli[J]. J Microencapsul, 1991, 8: 95-101.
[33] Horikawa M, Ishikawa M, Uchida BT, et al. Practical Tantalum coating of microspheres for experimental visualization under fluoroscopy and CT[J]. Vasc Interv Radiol , 2016, 27: 127-132.
[34] Zeng J, Li L, Zhang H, et al. Radiopaque and uniform alginate microspheres loaded with Tantalum nanoparticles for real-time imaging during transcatheter arterial embolization[J]. Theranostics, 2018, 8: 4591-4600.
[35] Malone CD, Fetzer DT, Monsky WL, et al. Contrast-enhanced US for the interventional radiologist: current and emerging applications[J]. Radiographics, 2020, 40: 562-588.
[36] Chong WK, Papadopoulou V, Dayton PA. Imaging with ultrasound contrast agents: current status and future[J]. Abdom Radiol(NY), 2018, 43: 762-772.
[37] Deng XQ, Zhang HB, Wang GF, et al. Colon-specific microspheres loaded with puerarin reduce tumorigenesis and metastasis in colitis-associated colorectal cancer[J]. Int J Pharm, 2019, 570: 118644.
[38] Foulds WS, Kek WK, Luu CD, et al. A porcine model of selective retinal capillary closure induced by embolization with fluorescent microspheres[J]. Invest Ophthalmol Vis Sci, 2010, 51: 6700-6709.
[39] Khalin I, Heimburger D, Melnychuk N, et al. Ultrabright fluorescent polymeric nanoparticles with a stealth pluronic shell for live tracking in the mouse brain[J]. ACS Nano, 2020, 14: 9755-9770.
[40] Patil SB, Kaul A, Babbar A, et al. In vivo evaluation of alginate microspheres of carvedilol for nasal delivery[J]. J Biomed Mater Res B Appl Biomater, 2012, 100: 249-255.
[41] 宋 晟.多功能医学显影探针的自组装途径构建及生物医学应用研究[D]. 上海:上海交通大学, 2015.
[42] Hagit A, Soenke B, Johannes B, et al. Synthesis and characte-rization of dual modality(CT/MRI) core-shell microparticles for embolization purposes[J]. Biomacromolecules, 2010, 11: 1600-1607.
[43] Bartling SH, Budjan J, Aviv H, et al. First multimodal embolization particles visible on X-ray/computed tomography and magnetic resonance imaging[J]. Invest Radiol, 2011, 46: 178-186.
[44] Sommer CM,Stampfl U,Bellemann N,et al. Multimodal visibility(radiography, computed tomography, and magnetic resonance imaging) of microspheres for transarterial embolization tested in porcine kidneys[J]. Invest Radiol, 2013, 48: 213-222.
[45] Stampfl U, Sommer CM, Bellemann N, et al. Multimodal visibility of a modified polyzene-F-coated spherical embolic agent for liver embolization: feasibility study in a porcine model[J]. J Vasc Interv Radiol, 2012, 23: 1225-1231.
[46] Liu KL,Jin ZC,Hu XL, et al. A biodegradable multifunctional porous microsphere composed of carrageenan for promoting imageable trans-arterial chemoembolization[J]. Int J Biol Macromol, 2020, 142: 866-878.
[47] Stella M, Braat AJAT, van Rooij R, et al. Holmium-166 radioe-mbolization: current status and future prospective[J]. Cardiovasc Intervent Radiol, 2022, 45: 1634-1645.

相似文献/References:

[1]游建雄,王精兵,艾松涛,等.微球联合碘油栓塞治疗肝癌的近期疗效分析 [J].介入放射学杂志,2017,(06):531.
 YOU Jianxiong,WANG Jingbing,AI Songtao,et al.TACE by using microspheres and lipiodol for the treatment of hepatocellular carcinoma: analysis of short- term efficacy[J].journal interventional radiology,2017,(02):531.
[2]何逸玮,邵国良.可视化栓塞微球的制备及研究进展[J].介入放射学杂志,2021,30(09):861.
 HE Yiwei,SHAO Guoliang..Preparation of radiopaque embolization microspheres and its research progress[J].journal interventional radiology,2021,30(02):861.

备注/Memo

备注/Memo:
(收稿日期:2022-12-01)
(本文编辑:茹 实)
更新日期/Last Update: 2024-03-08