[1]孔令华,贺迎坤,李天晓,等.镁基合金可生物降解支架血管内应用研究进展 [J].介入放射学杂志,2020,29(06):626-630.
 KONG Linghua,HE Yingkun,LI Tianxiao,et al.Advances in research on intravascular applications of biodegradable magnesium alloy stents[J].journal interventional radiology,2020,29(06):626-630.
点击复制

镁基合金可生物降解支架血管内应用研究进展
()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
29
期数:
2020年06
页码:
626-630
栏目:
综述
出版日期:
2020-06-25

文章信息/Info

Title:
Advances in research on intravascular applications of biodegradable magnesium alloy stents
作者:
孔令华 贺迎坤 李天晓 张一林 何艳艳 朱世杰
Author(s):
KONG LinghuaHE YingkunLI TianxiaoZHANG YilinHE YanyanZHU Shijie.
Department of Cerebrovascular Disease,People’s Hospital of Zhengzhou University,Henan Provincial People’s Hospital, Henan Provincial Neurointerventional Engineering Research Center,Zhengzhou, Henan Province 450003,China
关键词:
【关键词】 生物可吸收支架 镁合金可降解支架 脑血管疾病 冠心病 严重肢体缺血
文献标志码:
A
摘要:
【摘要】 在近半个世纪发展过程中,血管内永久植入金属支架造成的慢性炎性反应、支架内再狭窄及血栓形成等不足日益显现。支架的生物可降解特性理论上解决了永久性裸金属支架植入后相关并发症,生物可吸收支架(BRS)成为近年研究热点。依据BRS主要成分,可分为生物可吸收聚合物血管支架(BPVS)和可生物降解金属合金支架(BMAS)。镁基BMAS(Mg- BMAS)具有良好的力学结构特性和生物相容性,广泛应用于人体血管。该文就Mg- BMAS在脑血管、周围血管、循环大动脉和冠状动脉的临床前研究和临床应用作一综述,进一步探讨其优缺点、相应优化措施及应用前景。

参考文献/References:

[1] Sigwart U, Puel J, Mirkovitch V, et al. Intravascular stents to prevent occlusion and re- stenosis after transluminal angioplasty[J]. N Engl J Med, 1987, 316: 701- 706.
[2] Neumann FJ, Sousa- Uva M, Ahlsson A, et al. 2018 ESC/EACTS guidelines on myocardial revascularization[J]. Eur Heart J, 2019, 40: 87- 165.
[3] Nishio S, Kosuga K, Igaki K, et al. Long- term(>10 years) clinical outcomes of first- in- human biodegradable poly- l- lactic acid coronary stents: Igaki- Tamai stents[J]. Circulation, 2012, 125: 2343- 2353.
[4] Stone GW, Abizaid A, Onuma Y, et al. Effect of technique on outcomes following bioresorbable vascular scaffold implantation: analysis from the ABSORB trials[J]. J Am Coll Cardiol, 2017, 70: 2863- 2874.
[5] Stone GW, Granada JF. Very late thrombosis after bioresorbable scaffolds: cause for concern[J]. J Am Coll Cardiol, 2015, 66:1915- 1917.
[6] 闫现政,韩东明,杨瑞民,等. 可降解镁合金覆膜支架治疗兔颈总动脉侧壁型动脉瘤的可行性[J]. 中华放射学杂志, 2015,49:138- 142.
[7] 李宗明,刘 耿,张全会,等. 可降解镁合金气管支架在兔气管狭窄模型中初步应用[J]. 介入放射学杂志, 2018, 27:353- 356.
[8] Zheng JF, Qiu H, Tian Y, et al. Preclinical evaluation of a novel sirolimus- eluting iron bioresorbable coronary scaffold in porcine coronary artery at 6 months[J]. JACC Cardiovasc Interv,2019, 12:245- 255.
[9] Vojtech D, Kubasek J, Serak J, et al. Mechanical and corrosion properties of newly developed biodegradable Zn- based alloys for bone fixation[J]. Acta Biomater, 2011, 7: 3515- 3522.
[10] Mostaed E, Sikora- Jasinska M, Drelich JW, et al. Zinc- based alloys for degradable vascular stent applications[J]. Acta Biomater, 2018, 71:1- 23.
[11] Lin WJ, Zhang DY, Zhang G, et al. Design and characte- rization of a novel biocorrodible iron- based drug- eluting coronary scaffold[J]. Mater Design, 2016, 91: 72- 79.
[12] 甘佼弘,马 晶,崔志琼, 等. 生物可降解镁合金的全身毒性试验[J]. 中国老年学杂志, 2018, 38:4002- 4005.
[13] Razzaque MS. Magnesium: are we consuming Enough?[J]. Nut rients, 2018, 10:1863.
[14] 彭志清, 陈 亮, 丁 健,等.镁合金支架植入兔腹主动脉后血管内膜免疫组化及血清镁离子浓度观察[J]. 介入放射学杂志, 2018, 27:554- 557.
[15] Saver JL, Starkman S. Magnesium in clinical stroke[M]. Adelaide (AU): University of Adelaide Press, 2011: 205- 216.
[16] Shadman J, Sadeghian N, Moradi A, et al. Magnesium sulfate protects blood- brain barrier integrity and reduces brain edema after acute ischemic stroke in rats[J]. Metab Brain Dis, 2019, 34:1221- 1229
[17] Saver JL, Starkman S, Eckstein M, et al. Prehospital use of magnesium sulfate as neuroprotection in acute stroke[J]. N Engl J Med, 2015, 372: 528- 536.
[18] Can A, Rudy RF, Castro VM, et al. Low serum calcium and magnesium levels and rupture of intracranial aneurysms[J]. Stroke, 2018, 49: 1747- 1750.
[19] Larsson SC, Orsini N, Wolk A. Dietary magnesium intake and risk of stroke: a meta- analysis of prospective studies[J]. Am J Clin Nutr, 2012, 95: 362- 366.
[20] Gruter BE, Taschler D, Strange F, et al. Testing bioresorbable stent feasibility in a rat aneurysm model[J]. J Neurointerv Surg, 2019, 11:1050- 1054.
[21] Wang W, Wang YL, Chen M, et al. Magnesium alloy covered stent for treatment of a lateral aneurysm model in rabbit common carotid artery: an in vivo study[J]. Sci Rep, 2016, 6: 37401.
[22] 王 武, 程英升,李永东,等. 可降解镁合金覆膜支架治疗兔颈总动脉侧壁型动脉瘤可行性研究[J]. 介入放射学杂志, 2016,25:151- 154.
[23] 张宪亮, 崔红凯. 生物可吸收镁合金支架治疗20例兔模型颈内动脉瘤影像学和组织病理学研究[J]. 河南医学研究, 2018,27:781- 785.
[24] Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology[J]. Heart, 2003, 89: 651- 656.
[25] Peeters P, Bosiers M, Verbist J, et al. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia[J]. J Endovasc Ther, 2005, 12: 1- 5.
[26] Bosiers M, Peeters P, D’Archambeau O,et al. AMS INSIGHT:absorbable metal stent implantation for treatment of below- the- knee critical limb ischemia: 6- month analysis[J]. Cardiovasc Intervent Radiol, 2009, 32: 424- 435.
[27] Micari A, Nerla R. Vascular scaffold for below- the- knee vascular disease: have we got a new challenger ?[J]. JACC Cardiovasc Interv, 2016, 9: 1729- 1730.
[28] Varcoe R L, Schouten O, Thomas S D, et al. Experience with the absorb everolimus- eluting bioresorbable vascular scaffold in arteries below the knee: 12- month clinical and imaging outcomes[J]. JACC Cardiovasc Interv, 2016, 9: 1721- 1728.
[29] 黄俊杰, 栗 力. 重症肢体缺血膝下病变的治疗进展[J]. 天津医药, 2013, 41:187- 190.
[30] Zartner P, Cesnjevar R, Singer H, et al. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby[J]. Catheter Cardiovasc Interv, 2005, 66: 590- 594.
[31] Schranz D, Zartner P, Michel- Behnke I, et al. Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn[J]. Catheter Cardiovasc Interv, 2006, 67: 671- 673.
[32] Coyan GN, D’Amore A, Matsumura Y, et al. In vivo functional assessment of a novel degradable metal and elastomeric scaffold- based tissue engineered heart valve[J]. J Thorac Cardiovasc Surg, 2019, 157: 1809- 1816.
[33] Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non- randomised multicentre trial[J]. Lancet, 2007, 369: 1869- 1875.
[34] Ghimire G, Spiro J, Kharbanda R, et al. Initial evidence for the return of coronary vasoreactivity following the absorption of bioabsorbable magnesium alloy coronary stents[J]. EuroInter-vention, 2009, 4: 481- 484.
[35] Waksman R, Erbel R, Di Mario C, et al. Early- and long- term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries[J]. JACC Cardiovasc Interv, 2009, 2: 312- 320.
[36] Wittchow E, Adden N, Riedmüller J, et al. Bioresorbable drug- eluting magnesium- alloy scaffold: design and feasibility in a porcine coronary model[J]. EuroIntervention, 2013, 8: 1441- 1450.
[37] Haude M, Erbel R, Erne P, et al. Safety and performance of the drug- eluting absorbable metal scaffold(DREAMS) in patients with de- novo coronary lesions: 12 month results of the prospective, multicentre, first- in- man BIOSOLVE-Ⅰtrial[J]. Lancet, 2013, 381: 836- 844.
[38] Haude M, Erbel R, Erne P, et al. Safety and performance of the drug- eluting absorbable metal scaffold(DREAMS) in patients with de novo coronary lesions: 3- year results of the prospective, multicentre, first- in- man BIOSOLVE- Ⅰ trial[J]. EuroIntervention, 2016, 12: e160- e166.
[39] Haude M, Ince H, Toelg R, et al. Safety and performance of the second- generation drug- eluting absorbable metal scaffold(DREAMS 2G) in patients with de novo coronary lesions: three- year clinical results and angiographic findings of the BIOSOLVE-Ⅱ first- in- man trial[J]. EuroIntervention, 2020, 15:e1375- e1382.
[40] Verheye S, Wlodarczak A, Montorsi P, et al. Safety and performance of a resorbable magnesium scaffold under real- world conditions: 12- month outcomes of the first 400 patients enrolled in the BIOSOLVE- Ⅳ registry[J]. EuroIntervention, 2019, DOI:10.4244/EIJ- D- 18- 01058.
[41] Liu J, Zheng B, Wang P, et al. Enhanced in vitro and in vivo performance of Mg- Zn- Y- Nd alloy achieved with APTES pre- treatment for drug- eluting vascular stent application[J]. ACS Appl Mater Interfaces, 2016, 8:17842- 17858.
[42] Wang J, Wang L, Guan S, et al. Microstructure and corrosion properties of as sub- rapid solidification Mg- Zn- Y- Nd alloy in dynamic simulated body fluid for vascular stent application[J]. J Mater Sci Mater Med, 2010, 21:2001-2008.
[43] 关绍康,王 俊,王利国,等. 一种可生物降解血管支架用Mg- Zn- Y- Nd镁合金及其制备方法[P]. 中国专利, CN20111- 0043303.8, 2011- 10- 19:
[44] Son D, Lee J, Lee DJ, et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases[J]. ACS Nano, 2015, 9: 5937- 5946.

相似文献/References:

[1]武玙璠,汤超杰,王 武.生物可吸收血管内支架的现状[J].介入放射学杂志,2023,32(10):1040.
 WU Yufan,TANG Chaojie,WANG Wu..The current clinical application status of bioresorbable endovascular stents[J].journal interventional radiology,2023,32(06):1040.

备注/Memo

备注/Memo:
(收稿日期:2019- 12- 11)
(本文编辑:边 佶)
更新日期/Last Update: 2020-06-16