参考文献/References:
[1] D'Amore B,Smolinski-Zhao S,Daye D,et al.Role of machine learning and artificial intelligence in interventional oncology[J].Curr Oncol Rep,2021,23:70.
[2]Elizabeth VE,Sean R,CM ACM,et al.Artificial intelligence,augmented reality,and virtual reality advances and applications in interventional radiology[J].DIAGNOSTICS,2023,13:892-892.
[3]Chartrand G,Cheng PM,Vorontsov E,et al.Deep learning:a primer for radiologists[J].Radiographics,2017,37:2113-2131.
[4]Erickson B,Korfiatis P,Akkus Z,et al.Machine learning for medical imaging[J].Radiographics,2017,37:505-515.
[5]Kallini JR,Moriarty JM.Artificial intelligence in interventional radiology[J].Semin Intervent Radiol,2022,39:341-347.
[6]Seah J,Boeken T,Sapoval M,et al.Prime time for artificial intelligence in interventional radiology[J].Cardiovasc Intervent Radiol,2022,45:283-289.
[7]Iezzi R,Goldberg S,Merlino B,et al.Artificial intelligence in interventional radiology:a literature review and future perspectives[J].J Oncol,2019,2019:6153041.
[8]Waller J,O'Connor A,Rafaat E,et al.Applications and challenges of artificial intelligence in diagnostic and interventional radiology[J].Pol J Radiol,2022,87:e113-e117.
[9]Daye D,Staziaki PV,Furtado VF,et al.CT texture analysis and machine learning improve post-ablation prognostication in patients with adrenal metastases:a proof of concept[J].Cardiovasc Intervent Radiol,2019,42:1771-1776.
[10]Gurgitano M,Angileri SA,Roda GM,et al.Interventional radiology ex-machina:impact of artificial intelligence on practice[J].Radiol Med,2021,126:998-1006.
[11]Asadi H,Dowling R,Yan B,et al.Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy[J].PLoS One,2014,9:e88225.
[12]Hofmeister J,Bernava G,Rosi A,et al.Clot-based radiomics predict a mechanical thrombectomy strategy for successful recanalization in acute ischemic stroke[J].Stroke,2020,51:2488-2494.
[13]吴志远,程永德.数字介入——当介入放射学遇上数字医学[J].介入放射学杂志,2024,33:1-6.
[14]Uppot RN,Laguna B,McCarthy CJ,et al.Implementing virtual and augmented reality tools for radiology education and training,communication,and clinical care[J].Radiology,2019,291:570-580.
[15]Baum RA,Baum S.Interventional radiology:a half century of innovation[J].Radiology,2014,273:S75-S91.
[16]Desai SB,Pareek A,Lungren MP.Current and emerging artificial intelligence applications for pediatric interventional radiology[J].Pediatr Radiol,2022,52:2173-2177.
[17]Behr T,Pusch TP,Siegfarth M,et al.Deep reinforcement learning for the navigation of neurovascular catheters[J].Curr Dir Biomed Eng,2019,5:5-8.
[18]Jonsson A.Deep reinforcement learning in medicine[J].Kidney Dis(Basel),2019,5:18-22.
[19]Molony D,Hosseini H,Samady H.TCT-2 deep IVUS:a machine learning framework for fully automatic IVUS segmentation[J].J Am Coll Cardiol,2018,72:B1-B1.
[20]Cho H,Lee JG,Kang SJ,et al.Angiography-based machine learning for predicting fractional flow reserve in intermediate coronary artery lesions[J].J Am Heart Assoc,2019,8:e011685.
[21]Gunay G,Luu M,Moelker A,et al.Semiautomated registration of pre-and intraoperative CT for image-guided percutaneous liver tumor ablation interventions[J].Med Phys,2017,44:3718-3725.
[22]Posa A,Barbieri P,Mazza G,et al.Technological advancements in interventional oncology[J].Diagnostics,2023,13:228-228.
[23]Wei W,Haishan X,Alpers J,et al.A deep learning approach for 2D ultrasound and 3D CT/Mr image registration in liver tumor ablation[J].Comput Methods Programs Biomed,2021,206:106117.
[24]何梓君,孔 健.人工智能在介入放射学中的运用前景及挑战[J].介入放射学杂志,2023,32:1251-1255.
[25]刘亚欧,段云云.MRI结合人工智能技术预测弥漫性胶质瘤分子病理研究进展[J].中国医学影像技术,2024,40:801-804.
[26]李春香,马文娟,张 蕾,等.人工智能在肾肿瘤影像学中的应用研究进展[J].临床放射学杂志,2024,43:1034-1037.
[27]Abajian A,Murali N,Savic LJ,et al.Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning:an artificial intelligence concept[J].J Vasc Interv Radiol,2018,29:850-857.
[28]Meek RD,Lungren MP,Gichoya JW.Machine learning for the interventional radiologist[J].AJR Am J Roentgenol,2019,213:782-784.
[29]Condino S,Turini G,Parchi PD,et al.How to build a patient-specific hybrid simulator for orthopaedic open surgery:benefits and limits of mixed-reality using the microsoft HoloLens[J].J Healthc Eng,2018,2018:5435097.
[30]Neri E,Aghakhanyan G,Zerunian M,et al.Explainable AI in radiology:a white paper of the Italian Society of Medical and Interventional Radiology[J].Radiol Med,2023,128:755-764.
[31]Yang G,Ye QH,Xia J.Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion:a mini-review,two showcases and beyond[J].Inf Fusion,2022,77:29-52.
[32]Maloca PM,Müller PL,Lee AY,et al.Unraveling the deep learning gearbox in optical coherence tomography image segmentation towards explainable artificial intelligence[J].Commun Biol,2021,4:170.
[33]Li XH,Cao CC,Shi YH,et al.A survey of data-driven and knowledge-aware explainable AI[J].IEEE Trans Knowl Data Eng,2022,34:29-49.
[34]何晓曦,蔡云鹏.人工智能可解释性的研究现况及在医学领域应用效果评测[J].集成技术:1-20.
[35]Obermeyer Z,Emanuel EJ.Predicting the future:big data,machine learning,and clinical medicine[J].N Engl J Med,2016,375:1216-1219.
[36]Krause J,Gulshan V,Rahimy E,et al.Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy[J].Ophthalmology,2018,125:1264-1272.
[37]Pezoulas VC,Kourou KD,Kalatzis F,et al.Medical data quality assessment:On the development of an automated framework for medical data curation[J].Comput Biol Med,2019,107:270-283.
[38]Thrall JH,Li X,Li Q,et al.Artificial intelligence and machine learning in radiology:opportunities,challenges,pitfalls,and criteria for success.[J].J Am Coll Radiol,2018,15:504-508.
[39]Tadavarthi Y,Vey B,Krupinski E,et al.The state of radiology AI:considerations for purchase decisions and current market offerings[J].Radiol Artif Intell,2020,2:e200004.
[40]Mazaheri S,Loya MF,Newsome J,et al.Challenges of implementing artificial intelligence in interventional radiology[J].Semin Intervent Radiol,2021,38:554-559.
(收稿日期:2024-04-17)
(本文编辑:谷 珂)