[1]高 龙,闫海丽,吴 越,等.微波响应型纳米材料及其抗肿瘤应用的研究进展[J].介入放射学杂志,2022,31(06):623-626.
 GAO Long,YAN Haili,WU Yue,et al.Research progress in microwave-responsive nanomaterials and their anti-tumor application[J].journal interventional radiology,2022,31(06):623-626.
点击复制

微波响应型纳米材料及其抗肿瘤应用的研究进展()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
31
期数:
2022年06
页码:
623-626
栏目:
综述
出版日期:
2022-07-31

文章信息/Info

Title:
Research progress in microwave-responsive nanomaterials and their anti-tumor application
作者:
高 龙 闫海丽 吴 越 王 嵘 杜江锋 冯对平
Author(s):
GAO Long YAN Haili WU Yue WANG Rong DU Jiangfeng FENG Duiping.
Department of Oncological and Vascular Intervention, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
关键词:
【关键词】 微波响应 纳米材料 肿瘤消融
文献标志码:
A
摘要:
【摘要】 微波消融(MWA)是近年来兴起的一种针对实体肿瘤的微创介入治疗技术,具有创伤较小、疗效确切、可重复性等优势。但是,当肿瘤靠近重要脏器或者大血管时,MWA治疗往往不够彻底,由此而导致的残余肿瘤复发是影响MWA远期疗效的桎梏。随着纳米科学在生物医学领域的飞速发展,具有独
特理化性质的微波响应型纳米材料为增强MWA疗效、降低瘤周正常组织的热损伤及减少肿瘤复发提供了新的可能性。本文回顾现有微波响应型纳米材料的种类,分析其响应微波并应用于抗肿瘤治疗的作用机制,以期对新型微波响应型纳米材料的构建及其在肿瘤微波治疗领域的进一步临床转化提供系统而全面的参考。

参考文献/References:

[1] Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy[J]. Nat Rev Cancer, 2014, 14: 199- 208.
[2] Hinshaw JL, Lubner MG, Ziemlewicz TJ, et al. Percutaneous tumor ablation tools:microwave,radiofrequency,or cryoablation. What should you use and why?[J]. Radiographics, 2014, 34: 1344- 1362.
[3] Simon CJ, Dupuy DE, Mayo- Smith WW. Microwave ablation: principles and applications[J]. Radiographics, 2005, 25: S69- S83.
[4] Oliver Kappe C. Microwave dielectric heating in synthetic organic chemistry[J]. Chem Soc Rev, 2008, 37: 1127- 1139.
[5] Lubner MG, Brace CL, Hinshaw JL, et al. Microwave tumor ablation: mechanism of action, clinical results, and devices[J]. J Vasc Interv Radiol, 2010, 21: S192- S203.
[6] Singh S, Melnik R. Thermal ablation of biological tissues in disease treatment: a review of computational models and future directions[J]. Electromagn Biol Med, 2020, 39: 49- 88.
[7] 范卫君. 射频、微波、冷冻消融治疗肿瘤的临床应用及优势对比[J]. 实用医学杂志, 2013, 29:3447- 3448.
[8] Vietti Violi N, Duran R, Guiu B, et al. Efficacy of microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma in patients with chronic liver disease: a randomised controlled phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2018, 3: 317- 325.
[9] Iezzi R, Cioni R, Basile D, et al. Standardizing percutaneous microwave ablation in the treatment of lung tumors: a prospective multicenter trial(MALT study)[J]. Eur Radiol, 2021, 31: 2173- 2182.
[10] Yu J, Zhang X, Liu H, et al. Percutaneous microwave ablation versus laparoscopic partial nephrectomy for cT1a renal cell carcinoma: a propensity- matched cohort study of 1955 patients[J]. Radiology, 2020, 294: 698- 706.
[11] Nelson DB, Tam AL, Mitchell KG, et al. Local recurrence after microwave ablation of lung malignancies: a systematic review[J]. Ann Thorac Surg, 2019, 107: 1876- 1883.
[12] Izzo F, Granata V, Grassi R, et al. Radiofrequency ablation and microwave ablation in liver tumors: an update[J]. Oncologist, 2019, 24: e990- e1005.
[13] 刘若冰,李开艳,罗鸿昌,等. 大血管旁部位小肝癌的精准消融治疗[J]. 介入放射学杂志, 2019, 28:440- 443.
[14] 杨业发,伍 路,申淑群,等. 胆管冷却技术在中央胆管旁肝癌微波消融术中的应用[J]. 介入放射学杂志, 2014, 23:1048- 1051.
[15] Manthe RL, Foy SP, Krishnamurthy N, et al. Tumor ablation and nanotechnology[J]. Mol Pharm, 2010, 7: 1880- 1898.
[16] Wang Y, Sun S, Zhang Z, et al. Nanomaterials for cancer precision medicine[J]. Advanced Materials, 2018, 30: e1705660.
[17] Pelaz B, Alexiou C, Alvarez - Puebla RA, et al. Diverse appli- cations of nanomedicine[J]. ACS Nano, 2017, 11: 2313- 2381.
[18] 欧阳雪晖,欧阳墉,张学军. 纳米材料/技术在介入治疗中的应用现状和前景[J]. 介入放射学杂志, 2013, 22:265- 270.
[19] Chen X, Tan L, Liu T, et al. Micro- nanomaterials for tumor microwave hyperthermia: design, preparation, and application[J]. Curr Drug Deliv, 2017, 14: 307- 322.
[20] Shi H, Liu T, Fu C, et al. Insights into a microwave susceptible agent for minimally invasive microwave tumor thermal therapy[J]. Biomaterials, 2015, 44: 91- 102.
[21] Du Q, Ma T, Fu C, et al. Encapsulating ionic liquid and Fe3O4 nanoparticles in gelatin microcapsules as microwave susceptible agent for MR imaging- guided tumor thermotherapy[J]. ACS Appl Mater Interfaces, 2015, 7: 13612- 13619.
[22] Shi H, Niu M, Tan L, et al. A smart all- in- one theranostic platform for CT imaging guided tumor microwave thermotherapy based on IL@ZrO2 nanoparticles [J]. Chem Sci, 2015, 6: 5016- 5026.
[23] Yu M, Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles[J]. ACS Nano, 2015, 9: 6655- 6674.
[24] Tang T, Xu X, Wang Z, et al. Cu2ZnSnS4 nanocrystals for microwave thermal and microwave dynamic combination tumor therapy[J]. Chem Commun(Camb), 2019, 55: 13148- 13151.
[25] Zhu M, Nie G, Meng H, et al. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate[J]. Acc Chem Res, 2013, 46: 622- 631.
[26] Wang S, Tan L, Liang P, et al. Layered MoS2 nanoflowers for microwave thermal therapy[J]. J Mater Chem B, 2016, 4: 2133- 2141.
[27] Li T, Wu Q, Wang W, et al. MOF- derived nano- popcorns synthesized by sonochemistry as efficient sensitizers for tumor microwave thermal therapy[J]. Biomaterials, 2020, 234: 119773.
[28] Wang W, Cao MH. Ni3Sn2 alloy nanocrystals encapsulated within electrospun carbon nanofibers for enhanced microwave absorption performance[J]. Mater Chem Phys, 2016, 177: 198- 205.
[29] Ding D, Wang Y, Li X, et al. Rational design of core- shell Co@C microspheres for high- performance microwave absorption[J]. Carbon, 2017, 111: 722- 732.
[30] 郭子义,李晓光,金征宇. Fe2O3纳米复合栓塞材料联合微波消融治疗兔肾VX2肿瘤[J]. 中华放射学杂志, 2016, 50:464- 468.
[31] Wang L, Li X, Li Q, et al. Enhanced polarization from hollow cube- like ZnSnO3 wrapped by multiwalled carbon nanotubes: as a lightweight and high- performance microwave absorber[J]. ACS Appl Mater Interfaces, 2018, 10: 22602- 22610.
[32] Xing H, Liu Z, Lin L, et al. Excellent microwave absorption properties of Fe ion- doped SnO2/multi- walled carbon nanotube composites[J]. Rsc Advances, 2016, 6: 41656- 41664.
[33] Sun Y, Chen Z, Gong H, et al. Continuous“snowing” thermothe- rapeutic graphene[J]. Adv Mater, 2020, 32: e2002024.
[34] Sun Y, Yang L, Xia K, et al. “Snowing” graphene using microwave ovens[J]. Adv Mater, 2018: e1803189.
[35] Zhang C, Wang X, Du J, et al. Reactive oxygen species- regulating strategies based on nanomaterials for disease treatment[J]. Adv Sci(Weinh), 2021, 8: 2002797.
[36] Fu C, Zhou H, Tan L, et al. Microwave- activated mn- doped zirconium metal- organic framework nanocubes for highly effective combination of microwave dynamic and thermal therapies against cancer[J]. ACS Nano, 2018, 12: 2201- 2210.
[37] Wu Q, Xia N, Long D, et al. Dual- functional supernanoparticles with microwave dynamic therapy and microwave thermal therapy[J]. Nano Lett, 2019, 19: 5277- 5286.

备注/Memo

备注/Memo:
(收稿日期:2021- 03- 27)
(本文编辑:俞瑞纲)
更新日期/Last Update: 2022-07-29