[1]刘 冲,何金瞳,李 天,等.肝内血管对肝细胞癌微波消融疗效的影响:基于倾向性匹配评分研究 [J].介入放射学杂志,2021,30(07):667-673.
 LIU Chong,HE Jintong,LI Tian,et al.Effect of intrahepatic blood vessels on the efficacy of microwave ablation in treating hepatocellular carcinoma: a study based on propensity score matched method[J].journal interventional radiology,2021,30(07):667-673.
点击复制

肝内血管对肝细胞癌微波消融疗效的影响:基于倾向性匹配评分研究


()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
30
期数:
2021年07
页码:
667-673
栏目:
肿瘤介入
出版日期:
2021-07-29

文章信息/Info

Title:
Effect of intrahepatic blood vessels on the efficacy of microwave ablation in treating hepatocellular carcinoma: a study based on propensity score matched method
作者:
刘 冲 何金瞳 李 天 隋凯达 张洲博 张丹洋 邵海波
Author(s):
LIU Chong HE Jintong LI Tian SUI Kaida ZHANG Zhoubo ZHANG Danyang SHAO Haibo.
Department of Interventional Radiology, Affiliated First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
关键词:
【关键词】 微波消融 肝细胞癌 局部肿瘤进展 肝内血管
文献标志码:
A
摘要:
【摘要】 目的 探索肝内血管(>3 mm)对毗邻血管周围的肝细胞癌微波消融(MWA)疗效的影响。方法 回顾性分析2015年1月至2018年12月采用MWA治疗的肝癌患者126例(共199个肿瘤)。根据肝内肿瘤是否毗邻肝内血管将肿瘤分为毗邻组和非毗邻组:毗邻直径>3 mm的肝静脉、门静脉或腔静脉血管的肿瘤被定义为毗邻组,共37例40个瘤灶;距离直径>3 mm的肝静脉、门静脉或腔静脉10 mm以上的肿瘤定义为非毗邻组,共89例159个瘤灶。为避免其他因素干扰,排除距离肝被膜、胆囊、胃肠道5 mm以内的肿瘤。1∶2倾向性匹配评分(PSM)被用以平衡两组选择性偏倚及混杂影响。分析和比较两组肿瘤MWA后技术有效率、肿瘤局部进展率(LTP)及并发症差异有无统计学意义。结果 毗邻组40个瘤灶,非毗邻组80个瘤灶被成功匹配并纳入分析。整体技术有效率为86.7%(104/120),毗邻组和非毗邻组技术有效率分别为35/40(87.5)%和69/80(86.2)%(P=0.849)。多因素分析提示毗邻血管对MWA后技术有效率无显著影响(OR=0.907,95% CI=0.258-3.192,P=0.693)。中位随访时间为13.8个月,整体LTP率为23.1%(24/104)。毗邻组和非毗邻组1年、2年累计局部进展率分别为8.0%、27.0%和9.0%、31.0%。多因素分析显示两组LTP率差异无统计学意义(HR=0.874,95% CI=0.363-2.108,P= 0.765)。两组并发症差异无统计学意义(P=0.492)。结论 MWA治疗毗邻或非毗邻肝内血管的病灶,其技术有效率和局部进展率无明显差别。肝内血管(>3 mm)对MWA治疗肝细胞癌的疗效无显著影响,并未表现出显著的热沉降效应。

参考文献/References:

[1] Shi J, Sun Q, Wang Y, et al. Comparison of microwave ablation and surgical resection for treatment of hepatocellular carcinomas conforming to Milan criteria[J]. J Gastroenterol Hepatol, 2014, 29: 1500- 1507.
[2] Lin ZY, Li GL, Chen J, et al. Effect of heat sink on the recurrence of small malignant hepatic tumors after radiofrequency ablation[J]. J Cancer Res Ther, 2016, 12: C153- C158.
[3] Hinshaw JL, Lubner MG, Ziemlewicz TJ, et al. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation. What should you use and why?[J]. Radiographics, 2014, 34: 1344- 1362.
[4] Hocquelet A, Balageas P, Frulio N, et al. Aggressive intrasegmental recurrence of periportal hepatocellular carcinoma after radiofrequency ablation: role of ablative technique and heat- sink effect?[J]. Radiology, 2015, 276: 932- 933.
[5] Mori Y, Tamai H, Shingaki N, et al. Diffuse intrahepatic recurrence after percutaneous radiofrequency ablation for solitary and small hepatocellular carcinoma[J]. Hepatol Int, 2009, 3: 509- 515.
[6] 经 翔,丁建民,王彦冬,等. 射频消融和微波消融治疗肝癌的比较[J]. 介入放射学杂志, 2014, 23:306- 310.
[7] Vogl TJ, Nour- Eldin NA, Hammerstingl RM, et al. Microwave ablation(MWA): basics, technique and results in primary and metastatic liver neoplasms - review article[J]. Rofo, 2017, 189: 1055- 1066.
[8] Ringe KI, Lutat C, Rieder C, et al. Experimental evaluation of the heat sink effect in hepatic microwave ablation[J]. PLoS One, 2015, 10: e0134301.
[9] Pillai K, Akhter J, Chua TC, et al. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model[J]. Medicine(Baltimore), 2015, 94: e580.
[10] Huang S, Yu J, Liang P, et al. Percutaneous microwave ablation for hepatocellular carcinoma adjacent to large vessels: a long- term follow- up[J]. Eur J Radiol, 2014, 83: 552- 558.
[11] Kang TW, Lim HK, Cha DI. Percutaneous ablation for perivascular hepatocellular carcinoma: refining the current status based on emerging evidence and future perspectives[J]. World J Gastro-enterol, 2018, 24: 5331- 5337.
[12] 刘若冰,李开艳,罗鸿昌,等. 大血管旁部位小肝癌的精准消融治疗[J]. 介入放射学杂志, 2019, 28:440- 443.
[13] Shady W, Petre EN, Do KG, et al. Percutaneous microwave versus radiofrequency ablation of colorectal liver?metastases: ablation with clear margins(Ao) provides the best local tumor
control[J]. J Vasc Interv Radiol, 2018, 29: 268.e1- 275.e1.
[14] Leung U, Kuk D, D’angelica MI, et al. Long- term outcomes following microwave ablation for liver malignancies[J]. Br J Surg, 2015, 102: 85- 91.
[15] Qin S, Liu GJ, Huang M, et al. The local efficacy and influencing factors of ultrasound- guided percutaneous microwave ablation in colorectal liver metastases: a review of a 4- year experience at a single center[J]. Int J Hyperthermia, 2019, 36: 36- 43.
[16] Ahmed M, Solbiati L, Brace CL, et al. Image- guided tumor ablation: standardization of terminology and reporting criteria:a 10- year update[J]. Radiology, 2014, 273: 241- 260.
[17] Sacks D, McClenny TE, Cardella JF, et al. Society of interventional radiology clinical practice guidelines[J]. J Vasc Interv Radiol, 2009, 20: S189- S191.
[18] Mcdonald RJ, McDonald JS, Kallmes DF, et al. Behind the numbers: propensity score analysis:a primer for the diagnostic radiologist[J]. Radiology, 2013, 269: 640- 645.
[19] Lehmann KS, Poch FG, Rieder C, et al. Minimal vascular flows cause strong heat sink effects in hepatic radiofrequency ablation ex vivo[J]. J Hepatobiliary Pancreat Sci, 2016, 23: 508- 516.
[20] Hocquelet A, Loriaud A, Papadopoulos P, et al. Optimal multibipolar parameters should overcome heat- sink effect[J]. Int J Hyperthermia, 2016, 32: 940- 941.
[21] Snoeren N, Nijkamp MW, Berendsen T, et al. Multipolar radiofrequency ablation for colorectal liver metastases close to major hepatic vessels[J]. Surgeon, 2015, 13: 77- 82.
[22] Al- Alem I, Pillai K, Akhter J, et al. Heat sink phenomenon of bipolar and monopolar radiofrequency ablation observed using polypropylene tubes for vessel simulation[J]. Surg Innov, 2014, 21: 269- 276.
[23] Takahashi H, Kahramangil B, Kose E, et al. A comparison of microwave thermosphere versus radiofrequency thermal ablation in the treatment of colorectal liver metastases[J]. HPB(Oxford), 2018, 20: 1157- 1162.
[24] Deshazer G, Merck D, Hagmann M, et al. Physical modeling of microwave ablation zone clinical margin variance[J]. Med Phys, 2016, 43: 1764.
[25] Dou JP, Yu J, Yang XH, et al. Outcomes of microwave ablation for hepatocellular carcinoma adjacent to large vessels: a propensity score analysis[J]. Oncotarget, 2017, 8: 28758- 28768.
[26] Urbonas T, Anderson EM, Gordon- Weeks AN, et al. Factors predicting ablation site recurrence following percutaneous microwave ablation of colorectal hepatic metastases[J]. HPB (Oxford), 2019, 21: 1175- 1184.
[27] Yu J, Yu XL, Han ZY, et al. Percutaneous cooled- probe microwave versus radiofrequency ablation in early- stage hepatocellular carcinoma: a phase Ⅲ randomised controlled trial[J]. Gut, 2017, 66: 1172.
[28] Di Vece F, Tombesi P, Ermili F, et al. Coagulation areas produced by cool- tip radiofrequency ablation and microwave ablation using a device to decrease back- heating effects: a prospective pilot study[J]. Cardiovasc Intervent Radiol, 2014, 37: 723- 729.
[29] Yu NC, Raman SS, Kim YJ, et al. Microwave liver ablation: influence of hepatic vein size on heat- sink effect in a porcine model[J]. J Vasc Interv Radiol, 2008, 19: 1087- 1092.
[30] Shibata T, Murakami T, Ogata N. Percutaneous microwave coagulation therapy for patients with primary and metastatic hepatic tumors during interruption of hepatic blood flow[J]. Cancer, 2000, 88: 302- 311.
[31] Yi Y, Zhang Y, Wei Q, et al. Radiofrequency ablation or microwave ablation combined with transcatheter arterial chemoembolization in treatment of hepatocellular carcinoma by comparing with radiofrequency ablation alone[J]. Chin J Cancer Res, 2014, 26: 112- 118.
[32] Ma S, Ding M, Li J, et al. Ultrasound- guided percutaneous microwave ablation for hepatocellular carcinoma: clinical outcomes and prognostic factors[J]. J Cancer Res Clin Oncol, 2017, 143: 131- 142.
[33] Mann CD, Metcalfe MS, Lloyd DM, et al. The safety and efficacy of ablative techniques adjacent to the hepatic vasculature and biliary system[J]. ANZ J Surg, 2010, 80: 41- 49.
[34] Chiang J, Cristescu M, Lee MH, et al. Effects of microwave ablation on arterial and venous vasculature after treatment of hepatocellular carcinoma[J]. Radiology, 2016, 281: 617- 624.
[35] Livraghi T, Meloni F, Solbiati L, et al. Complications of microwave ablation for liver tumors: results of a multicenter study[J]. Cardiovasc Intervent Radiol, 2012, 35: 868- 874.
[36] Singh S, Siriwardana PN, Johnston EW, et al. Perivascular parenchymal extension of the ablation zone following liver microwave ablation[J]. BMJ Case Rep, 2016, 2016: bcr2015212871.
[37] Singh S, Siriwardana PN, Johnston EW, et al. Perivascular extension of microwave ablation zone: demonstrated using an ex vivo porcine perfusion liver model[J]. Int J Hyperthermia, 2018, 34: 1114- 1120.

相似文献/References:

[1]叶强.PEIT治疗肝脏恶性肿瘤[J].介入放射学杂志,1998,(01):24.
[2]叶强.肝脏肿瘤的经皮穿刺治疗:技术现状[J].介入放射学杂志,1998,(01):16.
[3]HondaN,Guo Q,Uchida H,等.经皮穿刺灼热生理盐水注射治疗肝癌——一个替代酒精注射的方法[J].介入放射学杂志,1995,(02):121.
[4]刘鹏芝,韩金红,赵凤珍,等.肝癌介入治疗中导管和导丝系列的清洗和消毒[J].介入放射学杂志,1996,(01):50.
[5]罗正益,李兴跃.肝脏疾病的血管造影诊断[J].介入放射学杂志,1996,(01):26.
[6]罗正益,曾炳生,郝春志,等.小肝癌CT和血管造影诊断——自内向外顺序染色征象的意义[J].介入放射学杂志,1996,(01):30.
[7]张大海,顾伟中,叶强.肝细胞癌的非手术治疗[J].介入放射学杂志,2000,(02):122.
[8]张璐西,施海彬,刘 圣,等.ACE联合索拉非尼治疗BCLC C期肝细胞癌20例疗效分析[J].介入放射学杂志,2014,(11):954.
 ZHANG Lu xi,SHI Hai bin,LIU Sheng,et al.Transarterial chemoembolization combined with sorafenib for hepatocellular carcinoma in BCLC C stage: clinical analysis of 20 cases[J].journal interventional radiology,2014,(07):954.
[9]杨业发,伍 路,申淑群,等.胆管冷却技术在中央胆管旁肝癌微波消融术中的应用[J].介入放射学杂志,2014,(12):1048.
 YANG Ye fa,WU Lu,SHEN Shu qun,et al.Application of intraductal cooling technique in percutaneous microwave ablation for hepatocellular carcinomas adjacent to central bile duct [J].journal interventional radiology,2014,(07):1048.
[10]赵 丹,梁 斌,王 勇,等.肝癌化疗栓塞后溶瘤综合征1例 [J].介入放射学杂志,2018,27(05):461.
 ZHAO Dan,LIANG Bin,WANG Yong,et al.Tumor lysis syndrome after transcatheter arterial chemoembolization: report of one case[J].journal interventional radiology,2018,27(07):461.

备注/Memo

备注/Memo:
(收稿日期:2020- 05- 27)
(本文编辑:俞瑞纲)
更新日期/Last Update: 2021-07-28