参考文献/References:
[1] 卢旺盛, 刘 达, 田增民, 等. 血管介入手术机器人的关键技术分析[J]. 生物医学工程研究, 2009, 28: 303-306.
[2] 贺志秀, 钱 炜, 宋成利. 介入手术中导管导向机器人技术的发展[J]. 介入放射学杂志, 2011, 20: 584-588.
[3] Ram W, Meyer H. Heart catheterization in a neonate by interacting magnetic fields: a new and simple method of catheter guidance[J]. Cathet Cardiovasc Diagn, 1991, 22: 317-319.
[4] Faddis MN, Blume W, Finney J, et al. Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation[J]. Circulation, 2002, 106: 2980-2985.
[5] Ernst S, Ouyang FF, Linder C, et al. Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation[J]. Circulation, 2004, 109: 1472-1475.
[6] Pappone C, Vicedomini G, Manguso F, et al. Robotic magnetic navigation for atrial fibrillation ablation[J]. J Am Coll Cardiol, 2006, 47: 1390-1400.
[7] Gang ES, Nguyen BL, Shachar Y, et al. Dynamically shaped magnetic fields: initial animal validation of a new remote electrophysiology catheter guidance and control system[J]. Circ Arrhythm Electrophysiol, 2011, 4: 770-777.
[8] Filgueiras-Rama D, Estrada A, Shachar J, et al. Remote magnetic navigation for accurate, real-time catheter positioning and ablation in cardiac electrophysiology procedures[J]. J Vis Exp, 2013, (74): e3658.
[9] Beyar R, Gruberg L, Deleanu D, et al. Remote-control percutaneous coronary interventions: concept, validation, and first-in-humans pilot clinical trial[J]. J Am Coll Cardiol, 2006, 47: 296-300.
[10] Beyar R, Wenderow T, Lindner D, et al. Concept, design and pre-clinical studies for remote control percutaneous coronary interventions[J]. EuroIntervention, 2005, 1: 340-345.
[11] Tian Z, Lu W, Wang T, et al. Application of a robotic telemanipulation system in stereotactic surgery[J]. Stereotact Funct Neurosurg, 2008, 86: 54-61.
[12] Cercenelli L, Marcelli E, Plicchi G. Initial experience with a telerobotic system to remotely navigate and automatically reposition standard steerable EP catheters[J]. ASAIO J, 2007, 53: 523-529.
[13] Ganji Y, Janabi-Sharifi F, Cheema AN. Robot-assisted catheter manipulation for intracardiac navigation[J]. Int J Comput Assist Radiol Surg, 2009, 4: 307-315.
[14] Tanimoto M, Arai F, Fukuda T, et al. Telesurgery system for intravascular neurosurgery[A]. In: Delp SL, DiGoia AM, Jaramaz B, eds. Medical Image Computing and Computer-Assisted Intervention: MICCAI 2000[M]. Berlin, Heidelberg: Springer, 2000: 29-39.
[15] Tanimoto M, Arai F, Fukuda T, et al. Augmentation of safety in a teleoperation system for intravascular neurosurgery[J]. Adv Robotics, 1998, 13: 323-325.
[16] Guo S, Kondo H, Wang J, et al. A New catheter operating system for medical applications[A]. 2007 IEEE/ICME International Conference on Complex Medical Engineering[M]. New York: IEEE Press, 2007: 82-86.
[17] Park JW, Choi J, Pak HN, et al. Development of a force-reflecting robotic platform for cardiac catheter navigation[J]. Artif Organs, 2010, 34: 1034-1039.
[18] Park JW, Choi J, Park Y, et al. Haptic virtual fixture for robotic cardiac catheter navigation[J]. Artif Organs, 2011, 35: 1127-1131.
[19] Al-Ahmad A, Grossman JD, Wang PJ. Early experience with a computerized robotically controlled catheter system[J]. J Interv Card Electrophysiol, 2005, 12: 199-202.
[20] Saliba W, Cummings JE, Oh S, et al. Novel robotic catheter remote control system: feasibility and safety of transseptal puncture and endocardial catheter navigation[J]. J Cardiovasc Electrophysiol, 2006, 17: 1102-1105.
[21] Kanagaratnam P, Koa-Wing M, Wallace DT, et al. Experience of robotic catheter ablation in humans using a novel remotely steerable catheter sheath[J]. J Interv Card Electrophysiol, 2008, 21: 19-26.
[22] Bismuth J, Duran C, Stankovic M, et al. A first-in-man study of the role of flexible robotics in overcoming navigation challenges in the iliofemoral arteries[J]. J Vasc Surg, 2013, 57: 14S-19S.
[23] Granada JF, Delgado JA, Uribe MP, et al. First-in-human evaluation of a novel robotic-assisted coronary angioplasty system[J]. JACC Cardiovasc Interv, 2011, 4: 460-465.
[24] Carrozza JP. Robotic-assisted percutaneous coronary intervention: filling an unmet need[J]. J Cardiovasc Transl Res, 2012, 5: 62-66.
[25] Mahmud E, Naghi J, Ang L, et al. Demonstration of the safety and feasibility of robotically assisted percutaneous coronary intervention in complex coronary lesions: results of the CORA-PCI study(complex robotically assisted percutaneous coronary intervention)[J]. JACC Cardiovasc Interv, 2017, 10: 1320-1327.
[26] Campbell PT, Kruse KR, Kroll CR, et al. The impact of precise robotic lesion length measurement on stent length selection: ramifications for stent savings[J]. Cardiovasc Revasc Med, 2015, 16: 348-350.
[27] Kim JJ, Macicek SL, Decker JA, et al. Magnetic versus manual catheter navigation for ablation of free wall accessory pathways in children[J]. Circ Arrhythm Electrophysiol, 2012, 5: 804-808.
[28] Adragao PP, Cavaco D, Ferreira AM, et al. Safety and long-term outcomes of catheter ablation of atrial fibrillation using magnetic navigation versus manual conventional ablation: a propensity-score analysis[J]. J Cardiovasc Electrophysiol, 2016, 27: S11-S16.
[29] Hendriks AA, Akca F, Dabiri Abkenari L, et al. Safety and clinical outcome of catheter ablation of ventricular arrhythmias using contact force sensing: consecutive case series[J]. J Cardiovasc Electrophysiol, 2015,[Epub ahead of print].
[30] Weiss JP, May HT, Bair TL, et al. A comparison of remote magnetic irrigated tip ablation versus manual catheter irrigated tip catheter ablation with and without force sensing feedback [J]. J Cardiovasc Electrophysiol, 2016, 27: S5-S10.
[31] Weisz G, Metzger DC, Caputo RP, et al. Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) study[J]. J Am Coll Cardiol, 2013, 61: 1596-1600.
[32] Mahmud E, Schmid F, Kalmar P, et al. Feasibility and safety of robotic peripheral vascular interventions: results of the RAPID trial[J]. JACC Cardiovasc Interv, 2016, 9: 2058-2064.
[33] Bhaskaran A, Barry MA, Al Raisi SI, et al. Magnetic guidance versus manual control: comparison of radiofrequency lesion dimensions and evaluation of the effect of heart wall motion in a myocardial phantom[J]. J Interv Card Electrophysiol, 2015, 44: 1-8.
[34] Szili-Torok T, Schwagten B, Akca F, et al. Catheter ablation of ventricular tachycardias using remote magnetic navigation: a consecutive case-control study[J]. J Cardiovasc Electrophysiol, 2012, 23: 948-954.
[35] Campbell PT, Mahmud E, Marshall JJ. Interoperator and intraoperator(in)accuracy of stent selection based on visual estimation[J]. Catheter Cardiovasc Interv, 2015, 86: 1177-1183.
[36] 赵德朋, 刘 达. 血管介入手术机器人系统力反馈的模糊融合[J]. 机器人, 2013, 35: 60-66.
相似文献/References:
[1]江雄鹰,罗荣光,黄金华,等.兔VX2肝癌模型建立与经兔股动脉微导管超选择性肝左动脉插管技术的探讨[J].介入放射学杂志,2011,(03):214.
JIANG Xiong-ying,LUO Rong-guang,HUANG Jin-hua,et al.The establishment of implanted VX2 liver tumor model in rabbits and discussion on superselective left hepatic arterial catheterization with micro-catheter technique via femoral artery[J].journal interventional radiology,2011,(01):214.
[2]田 洪,刘 磊.颅内动脉瘤介入治疗术中并发症的处理[J].介入放射学杂志,2013,(02):166.
TIAN Hong,LIU Lei..The management of complications occurring during interventional management for intracranial aneurysms[J].journal interventional radiology,2013,(01):166.
[3]杨延杰,马靖嶔,颜志平.可视化微球研究进展[J].介入放射学杂志,2024,33(02):115.
YANG Yanjie,MA Jingqin,YAN Zhiping..Research advances in visualized microspheres[J].journal interventional radiology,2024,33(01):115.