参考文献/References:
[1] Yang X. Interventional molecular imaging[J]. Radiology, 2010, 254: 651- 654.
[2] Van Leeuwen FW, Hardwick JC, van Erkel AR. Luminescence- based Imaging approaches in the field of interventional molecular imaging[J]. Radiology, 2015, 276: 12- 29.
[3] Chin PT, Welling MM, Meskers SC, et al. Optical imaging as an expansion of nuclear medicine: cerenkov- based luminescence vs fluorescence- based luminescence[J]. Eur J Nucl Med Mol Imaging, 2013, 40: 1283- 1291.
[4] Weissleder R, Mahmood U. Molecular imaging[J]. Radiology, 2001, 219: 316- 333.
[5] Chen ZY, Wang YX, Lin Y, et al. Advance of molecular imaging technology and targeted imaging agent in imaging and therapy[J]. Biomed Res Int, 2014, 2014: 819324.
[6] Khanicheh E, Qi Y, Xie A, et al. Molecular imaging reveals rapid reduction of endothelial activation in early atherosclerosis with apocynin Independent of antioxidative properties[J]. Arterioscler Thromb Vasc Biol, 2013, 33: 2187- 2192.
[7] Sheth RA, Heidari P, Esfahani SA, et al. Interventional optical molecular imaging guidance during percutaneous biopsy[J]. Radio- logy, 2014, 271: 770- 777.
[8] New SE, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification[J]. Circ Res, 2011, 108: 1381- 1391.
[9] Ju S, Teng GJ, Lu H, et al. In vivo MR trucking of mesenclymal stem cells in rat liver after intrasplenic transplantation[J]. Radio- logy, 2007, 245: 206- 215.
[10] Weissleder R, Pittet MJ. Imaging in the era of molecular oncology[J]. Nature, 2008, 452: 580- 589.
[11] Gomes CM, Abrunhosa AJ, Ramos P, et al. Molecular imaging with SPECT as a tool for drug development[J]. Adv Drug Deliv Rev, 2011, 63: 547- 554.
[12] Byrne AT, O’connor AE, Hall M, et al. Vascular- targeted photodynamic therapy with BF2- chelated Tetraaryl- Azadipyrro- methene agents: a multi- modality molecular imaging approach to therapeutic assessment[J]. Br J Cancer, 2009, 101: 1565- 1573.
[13] Rudin M, Weissleder R. Molecular imaging in drug discovery and development[J]. Nat Rev Drug Discov, 2003, 2: 123- 131.
[14] Perrone A. Molecular imaging technologies and translational medicine[J]. J Nucl Med, 2008, 49: 25N.
[15] Wagner HN Jr. From molecular imaging to molecular medicine[J]. J Nucl Med, 2006, 47: 13N- 15N, 17N- 21N, 22N- 26N.
[16] Herschman HR. Molecular imaging: Looking at problems, seeing solutions[J]. Science, 2003, 302: 605- 608.
[17] James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications[J]. Physiol Rev, 2012, 92: 897- 965.
[18] Wang YX, Choi Y, Chen Z, et al. Molecular imaging: from bench to clinic[J]. Biomed Res Int, 2014, 2014: 357258.
[19] Weissleder R. Molecular imaging: exploring the next frontier[J]. Radiology, 1999, 212: 609- 614.
[20] Thakur ML, Lentle BC. Joint SNM/RSNA molecular imaging summit statement[J]. J Nucl Med, 2005, 46: 11N- 13N, 42N.
[21] Mankoff DA. A definition of molecular imaging[J]. J Nucl Med, 2007, 48: 18N, 21N.
[22] Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light[J]. Genes Dev, 2003, 17: 545- 580.
[23] Margulis AR. Molecular imaging: love it or lose it[J]. Radiology, 2012, 264: 5.
[24] Alencar H, Funovics MA, Figueiredo J, et al. Colonic adenocar- cinomas: near- infrared microcatheter imaging of smart probes for early detection- study in mice[J]. Radiology, 2007, 244: 232- 238.
[25] Wang Y, Lian F, Li JP, et al. Adipose derived mesenchymal stem cells transplantation via portal vein improves microcirculation and ameliorates liver fibrosis induced by CCl4 in rats[J]. J Transl Med, 2012, 10: 133.
[26] Al TH, El DA, Amer N, et al. Autologous stem cells transplantation in Egyptian patients with liver cirrhosis on top of hepatitis C virus[J]. Int J Stem Cells, 2015, 8: 209- 218.
[27] Avritscher R, Abdelsalam ME, Javadi S, et al. Percutaneous intraportal application of adipose tissue- derived mesenchymal stem cells using a balloon occlusion catheter in a porcine model of liver fibrosis[J]. J Vasc Interv Radiol, 2013, 24: 1871- 1878.
[28] Pang P, Wu C, Shen M, et al. An MRI- visible non- viral vector bearing GD2 single chain antibody for targeted gene delivery to human bone marrow mesenchymal stem cells[J]. PLoS One, 2013, 8: e76612.
[29] Gholamrezanezhad A, Mirpour S, Bagheri M, et al. In vivo tracking of 111In- oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis[J]. Nucl Med Biol, 2011, 38: 961- 967.
[30] Kim TH, Kim JK, Shim W, et al. Tracking of transplanted mesen- chymal stem cells labeled with fluorescent magnetic nano- particle in liver cirrhosis rat model with 3- T MRI[J]. Magn Reson Imaging, 2010, 28: 1004- 1013.
[31] Yang X, Atalar E, Li D, et al. Magnetic resonance imaging permits in vivo monitoring of catheter- based vascular gene delivery[J]. Circulation, 2001, 104: 1588- 1590.
[32] Du X, Yang Y, Le Visage C, et al. In vivo US monitoring of catheter- based vascular delivery of gene microspheres in pigs: Feasibility[J]. Radiology, 2003, 228: 555- 559.
[33] Weissleder R. Molecular imaging in cancer[J]. Science, 2006, 312: 1168- 1171.
[34] Bouchelouche K, Capala J, Oehr P. Positron emission tomography/computed tomography and radioimmunotherapy of prostate cancer[J]. Curr Opin Oncol, 2009, 21: 469- 474.
[35] Shieh P, Bertozzi CR. Design strategies for bioorthogonal smart probes[J]. Org Biomol Chem, 2014, 12: 9307- 9320.
[36] Hussain T, Nguyen QT. Molecular imaging for cancer diagnosis and surgery[J]. Adv Drug Deliv Rev, 2014, 66: 90- 100.
[37] Bonnet CS, Toth E. Smart MR imaging agents relevant to potential neurologic applications[J]. AJNR Am J Neuroradiol, 2010, 31: 401- 409.
[38] Raymond SB, Skoch J, Hills ID, et al. Smart optical probes for near- infrared fluorescence imaging of alzheimer’s disease pathology[J]. Eur J Nucl Med Mol Imaging, 2008, 35(Suppl 1): S93- S98.
[39] Chen ZY, Wang YX, Yang F, et al. New researches and application progress of commonly used optical molecular imaging technology[J]. Biomed Res Int, 2014, 2014: 429198.
[40] Lee JH, Park G, Hong GH, et al. Design considerations for targeted optical contrast agents[J]. Quant Imaging Med Surg, 2012, 2: 266- 273.
[41] Gibbs SL. Near infrared fluorescence for image- guided surgery[J]. Quant Imaging Med Surg, 2012, 2: 177- 187.
[42] Funovics MA, Weissleder R, Mahmood U. Catheter- based in vivo imaging of enzyme activity and gene expression: feasibility study in mice[J]. Radiology, 2004, 231: 659- 666.
[43] Kar S, Kumar A, Gao F, et al. Percutaneous optical imaging system to track reporter gene expression from vasculatures in vivo[J]. J Biomed Opt, 2006, 11: 34008.
[44] Fujimoto JG. Optical coherence tomography for ultrahigh reso- lution in vivo imaging[J]. Nat Biotechnol, 2003, 21: 1361- 1367.
[45] Yamaguchi T, Terashima M, Akasaka T, et al. Safety and feasi- bility of an intravascular optical coherence tomography image wire system in the clinical setting[J]. Am J Cardiol, 2008, 101: 562- 567.
[46] Tearney GJ, Jang IK, Bouma BE. Optical coherence tomography for imaging the vulnerable plaque[J]. J Biomed Opt, 2006, 11: 21002.
[47] Ma J, Martin K, Dayton PA, et al. A preliminary engineering design of intravascular dual- frequency transducers for contras- tenhanced acoustic angiography and molecular imaging[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2014, 61: 870- 880.
[48] Sheth RA, Arellano RS, Uppot RN, et al. Prospective trial with optical molecular imaging for percutaneous interventions in focal hepatic lesions[J]. Radiology, 2015, 274: 917- 926.
[49] Greco F, Cadeddu JA, Gill IS, et al. Current perspectives in the use of molecular imaging to target surgical treatments for genitour- inary cancers[J]. Eur Urol, 2014, 65: 947- 964.
[50] van der Vorst JR, Schaafsma B E, Hutteman M, et al. Near- infrared fluorescence- guided resection of colorectal liver metastases[J]. Cancer, 2013, 119: 3411- 3418.
[51] Ishizawa T, Fukushima N, Shibahara JA, et al. Real- time iden- tification of liver cancers by using indocyanine green fluorescent imaging[J]. Cancer, 2009, 115: 2491- 2504.
[52] van den Berg NS, Valdes- Olmos RA, van der Poel HG, et al. Sentinel lymph node biopsy for prostate cancer: a hybrid approach[J]. J Nucl Med, 2013, 54: 493- 496.
[53] Schaafsma BE, Mieog JS, Hutteman M, et al. The clinical use of indocyanine green as a near- infrared fluorescent contrast agent for image- guided oncologic surgery[J]. J Surg Oncol, 2011, 104: 323- 332.
[54] Manenti G, Perretta T, Gaspari E, et al. Percutaneous local ablation of unifocal subclinical breast cancer: clinical experience and preliminary results of cryotherapy[J]. Eur Radiol, 2011, 21: 2344- 2353.
[55] Sridhar AN, Hughes- Hallett A, Mayer EK, et al. Image- guided robotic interventions for prostate cancer[J]. Nat Rev Urol, 2013, 10: 452- 462.
[56] Ahmed M, Brace CL, Lee FJ, et al. Principles of and advances in percutaneous ablation[J]. Radiology, 2011, 258: 351- 369.
[57] Qiu J, Chen S, Wu H. Long- term outcomes after hepatic resection combined with radiofrequency ablation for initially unresectable multiple and bilobar liver malignancies[J]. J Sur Res, 2014, 188: 14- 20.
[58] Fonseca AZ, Santin S, Gomes LG, et al. Complications of radiofre- quency ablation of hepatic tumors: frequency and risk factors[J]. World J Hepatol, 2014, 6: 107- 113.
[59] Kolodgie FD, John M, Khurana C, et al. Sustained reduction of in- stent neointimal growth with the use of a novel systemic nanop- article paclitaxel[J]. Circulation, 2002, 106: 1195- 1198.
[60] Banai S, Chorny M, Gertz SD, et al. Locally delivered nanoencap- sulated tyrphostin(AGL-2043) reduces neointima formation in balloon- injured rat carotid and stented porcine coronary arteries[J]. Biomaterials, 2005, 26: 451- 461.
[61] Graziadei IW, Sandmueller H, Waldenberger P, et al. Chemoem-bolization followed by liver transplantation for hepatocellular carcinoma impedes tumor progression while on the waiting list and leads to excellent outcome[J]. Liver Transpl, 2003, 9: 557- 563.
[62] 滕皋军, 卢 勤. 介入放射学的机遇: 介入技术在生物靶向治疗中的应用与优势[J]. 介入放射学杂志, 2007, 16: 73- 74.