[1]朱海云,程永德,申宝忠.介入分子影像学研究进展[J].介入放射学杂志,2016,(01):1-6.
 ZHU Hai- yun,CHENG Yong- de,SHEN Bao- zhong.Recent research progress in interventional molecular imaging[J].journal interventional radiology,2016,(01):1-6.
点击复制

介入分子影像学研究进展()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
期数:
2016年01期
页码:
1-6
栏目:
专论
出版日期:
2016-01-25

文章信息/Info

Title:
Recent research progress in interventional molecular imaging
作者:
朱海云 程永德 申宝忠
Author(s):
ZHU Hai- yun CHENG Yong- de SHEN Bao- zhong
Department of Radiology, No.85 Hospital of PLA, Shanghai 200052, China
关键词:
【关键词】 分子影像学 介入放射学 介入分子影像学 分子探针 成像技术 临床应用
文献标志码:
A
摘要:
【摘要】 近年来分子影像学迅速发展,为分子生物学、临床靶向治疗学等相关领域研究提供了有力的活体内监测手段。但目前多种分子影像技术在临床应用均存在一定的局限性,其对大动物乃至人的研究工作受到极大限制,使得分子影像学仍处于小动物基础成像或临床前研究阶段。介入分子影像学的出现,为解决这一系列问题提供了新思路,通过优化分子探针导入方式、改良现有分子成像技术装置等,使分子影像学从小动物基础研究发展为大动物研究和临床应用研究成为可能,并最终成为临床转化的重要桥梁。同时,介入分子影像学融合了分子影像诊断学与临床靶向治疗学,这无疑将成为推动临床靶向治疗及个体化治疗的重要力量,对未来临床诊治工作产生又一革命性影响,也是未来介入放射学发展的重要方向。

参考文献/References:

[1] Yang X. Interventional molecular imaging[J]. Radiology, 2010, 254: 651- 654.
[2] Van Leeuwen FW, Hardwick JC, van Erkel AR. Luminescence- based Imaging approaches in the field of interventional molecular imaging[J]. Radiology, 2015, 276: 12- 29.
[3] Chin PT, Welling MM, Meskers SC, et al. Optical imaging as an expansion of nuclear medicine: cerenkov- based luminescence vs fluorescence- based luminescence[J]. Eur J Nucl Med Mol Imaging, 2013, 40: 1283- 1291.
[4] Weissleder R, Mahmood U. Molecular imaging[J]. Radiology, 2001, 219: 316- 333.
[5] Chen ZY, Wang YX, Lin Y, et al. Advance of molecular imaging technology and targeted imaging agent in imaging and therapy[J]. Biomed Res Int, 2014, 2014: 819324.
[6] Khanicheh E, Qi Y, Xie A, et al. Molecular imaging reveals rapid reduction of endothelial activation in early atherosclerosis with apocynin Independent of antioxidative properties[J]. Arterioscler Thromb Vasc Biol, 2013, 33: 2187- 2192.
[7] Sheth RA, Heidari P, Esfahani SA, et al. Interventional optical molecular imaging guidance during percutaneous biopsy[J]. Radio- logy, 2014, 271: 770- 777.
[8] New SE, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification[J]. Circ Res, 2011, 108: 1381- 1391.
[9] Ju S, Teng GJ, Lu H, et al. In vivo MR trucking of mesenclymal stem cells in rat liver after intrasplenic transplantation[J]. Radio- logy, 2007, 245: 206- 215.
[10] Weissleder R, Pittet MJ. Imaging in the era of molecular oncology[J]. Nature, 2008, 452: 580- 589.
[11] Gomes CM, Abrunhosa AJ, Ramos P, et al. Molecular imaging with SPECT as a tool for drug development[J]. Adv Drug Deliv Rev, 2011, 63: 547- 554.
[12] Byrne AT, O’connor AE, Hall M, et al. Vascular- targeted photodynamic therapy with BF2- chelated Tetraaryl- Azadipyrro- methene agents: a multi- modality molecular imaging approach to therapeutic assessment[J]. Br J Cancer, 2009, 101: 1565- 1573.
[13] Rudin M, Weissleder R. Molecular imaging in drug discovery and development[J]. Nat Rev Drug Discov, 2003, 2: 123- 131.
[14] Perrone A. Molecular imaging technologies and translational medicine[J]. J Nucl Med, 2008, 49: 25N.
[15] Wagner HN Jr. From molecular imaging to molecular medicine[J]. J Nucl Med, 2006, 47: 13N- 15N, 17N- 21N, 22N- 26N.
[16] Herschman HR. Molecular imaging: Looking at problems, seeing solutions[J]. Science, 2003, 302: 605- 608.
[17] James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications[J]. Physiol Rev, 2012, 92: 897- 965.
[18] Wang YX, Choi Y, Chen Z, et al. Molecular imaging: from bench to clinic[J]. Biomed Res Int, 2014, 2014: 357258.
[19] Weissleder R. Molecular imaging: exploring the next frontier[J]. Radiology, 1999, 212: 609- 614.
[20] Thakur ML, Lentle BC. Joint SNM/RSNA molecular imaging summit statement[J]. J Nucl Med, 2005, 46: 11N- 13N, 42N.
[21] Mankoff DA. A definition of molecular imaging[J]. J Nucl Med, 2007, 48: 18N, 21N.
[22] Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light[J]. Genes Dev, 2003, 17: 545- 580.
[23] Margulis AR. Molecular imaging: love it or lose it[J]. Radiology, 2012, 264: 5.
[24] Alencar H, Funovics MA, Figueiredo J, et al. Colonic adenocar- cinomas: near- infrared microcatheter imaging of smart probes for early detection- study in mice[J]. Radiology, 2007, 244: 232- 238.
[25] Wang Y, Lian F, Li JP, et al. Adipose derived mesenchymal stem cells transplantation via portal vein improves microcirculation and ameliorates liver fibrosis induced by CCl4 in rats[J]. J Transl Med, 2012, 10: 133.
[26] Al TH, El DA, Amer N, et al. Autologous stem cells transplantation in Egyptian patients with liver cirrhosis on top of hepatitis C virus[J]. Int J Stem Cells, 2015, 8: 209- 218.
[27] Avritscher R, Abdelsalam ME, Javadi S, et al. Percutaneous intraportal application of adipose tissue- derived mesenchymal stem cells using a balloon occlusion catheter in a porcine model of liver fibrosis[J]. J Vasc Interv Radiol, 2013, 24: 1871- 1878.
[28] Pang P, Wu C, Shen M, et al. An MRI- visible non- viral vector bearing GD2 single chain antibody for targeted gene delivery to human bone marrow mesenchymal stem cells[J]. PLoS One, 2013, 8: e76612.
[29] Gholamrezanezhad A, Mirpour S, Bagheri M, et al. In vivo tracking of 111In- oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis[J]. Nucl Med Biol, 2011, 38: 961- 967.
[30] Kim TH, Kim JK, Shim W, et al. Tracking of transplanted mesen- chymal stem cells labeled with fluorescent magnetic nano- particle in liver cirrhosis rat model with 3- T MRI[J]. Magn Reson Imaging, 2010, 28: 1004- 1013.
[31] Yang X, Atalar E, Li D, et al. Magnetic resonance imaging permits in vivo monitoring of catheter- based vascular gene delivery[J]. Circulation, 2001, 104: 1588- 1590.
[32] Du X, Yang Y, Le Visage C, et al. In vivo US monitoring of catheter- based vascular delivery of gene microspheres in pigs: Feasibility[J]. Radiology, 2003, 228: 555- 559.
[33] Weissleder R. Molecular imaging in cancer[J]. Science, 2006, 312: 1168- 1171.
[34] Bouchelouche K, Capala J, Oehr P. Positron emission tomography/computed tomography and radioimmunotherapy of prostate cancer[J]. Curr Opin Oncol, 2009, 21: 469- 474.
[35] Shieh P, Bertozzi CR. Design strategies for bioorthogonal smart probes[J]. Org Biomol Chem, 2014, 12: 9307- 9320.
[36] Hussain T, Nguyen QT. Molecular imaging for cancer diagnosis and surgery[J]. Adv Drug Deliv Rev, 2014, 66: 90- 100.
[37] Bonnet CS, Toth E. Smart MR imaging agents relevant to potential neurologic applications[J]. AJNR Am J Neuroradiol, 2010, 31: 401- 409.
[38] Raymond SB, Skoch J, Hills ID, et al. Smart optical probes for near- infrared fluorescence imaging of alzheimer’s disease pathology[J]. Eur J Nucl Med Mol Imaging, 2008, 35(Suppl 1): S93- S98.
[39] Chen ZY, Wang YX, Yang F, et al. New researches and application progress of commonly used optical molecular imaging technology[J]. Biomed Res Int, 2014, 2014: 429198.
[40] Lee JH, Park G, Hong GH, et al. Design considerations for targeted optical contrast agents[J]. Quant Imaging Med Surg, 2012, 2: 266- 273.
[41] Gibbs SL. Near infrared fluorescence for image- guided surgery[J]. Quant Imaging Med Surg, 2012, 2: 177- 187.
[42] Funovics MA, Weissleder R, Mahmood U. Catheter- based in vivo imaging of enzyme activity and gene expression: feasibility study in mice[J]. Radiology, 2004, 231: 659- 666.
[43] Kar S, Kumar A, Gao F, et al. Percutaneous optical imaging system to track reporter gene expression from vasculatures in vivo[J]. J Biomed Opt, 2006, 11: 34008.
[44] Fujimoto JG. Optical coherence tomography for ultrahigh reso- lution in vivo imaging[J]. Nat Biotechnol, 2003, 21: 1361- 1367.
[45] Yamaguchi T, Terashima M, Akasaka T, et al. Safety and feasi- bility of an intravascular optical coherence tomography image wire system in the clinical setting[J]. Am J Cardiol, 2008, 101: 562- 567.
[46] Tearney GJ, Jang IK, Bouma BE. Optical coherence tomography for imaging the vulnerable plaque[J]. J Biomed Opt, 2006, 11: 21002.
[47] Ma J, Martin K, Dayton PA, et al. A preliminary engineering design of intravascular dual- frequency transducers for contras- tenhanced acoustic angiography and molecular imaging[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2014, 61: 870- 880.
[48] Sheth RA, Arellano RS, Uppot RN, et al. Prospective trial with optical molecular imaging for percutaneous interventions in focal hepatic lesions[J]. Radiology, 2015, 274: 917- 926.
[49] Greco F, Cadeddu JA, Gill IS, et al. Current perspectives in the use of molecular imaging to target surgical treatments for genitour- inary cancers[J]. Eur Urol, 2014, 65: 947- 964.
[50] van der Vorst JR, Schaafsma B E, Hutteman M, et al. Near- infrared fluorescence- guided resection of colorectal liver metastases[J]. Cancer, 2013, 119: 3411- 3418.
[51] Ishizawa T, Fukushima N, Shibahara JA, et al. Real- time iden- tification of liver cancers by using indocyanine green fluorescent imaging[J]. Cancer, 2009, 115: 2491- 2504.
[52] van den Berg NS, Valdes- Olmos RA, van der Poel HG, et al. Sentinel lymph node biopsy for prostate cancer: a hybrid approach[J]. J Nucl Med, 2013, 54: 493- 496.
[53] Schaafsma BE, Mieog JS, Hutteman M, et al. The clinical use of indocyanine green as a near- infrared fluorescent contrast agent for image- guided oncologic surgery[J]. J Surg Oncol, 2011, 104: 323- 332.
[54] Manenti G, Perretta T, Gaspari E, et al. Percutaneous local ablation of unifocal subclinical breast cancer: clinical experience and preliminary results of cryotherapy[J]. Eur Radiol, 2011, 21: 2344- 2353.
[55] Sridhar AN, Hughes- Hallett A, Mayer EK, et al. Image- guided robotic interventions for prostate cancer[J]. Nat Rev Urol, 2013, 10: 452- 462.
[56] Ahmed M, Brace CL, Lee FJ, et al. Principles of and advances in percutaneous ablation[J]. Radiology, 2011, 258: 351- 369.
[57] Qiu J, Chen S, Wu H. Long- term outcomes after hepatic resection combined with radiofrequency ablation for initially unresectable multiple and bilobar liver malignancies[J]. J Sur Res, 2014, 188: 14- 20.
[58] Fonseca AZ, Santin S, Gomes LG, et al. Complications of radiofre- quency ablation of hepatic tumors: frequency and risk factors[J]. World J Hepatol, 2014, 6: 107- 113.
[59] Kolodgie FD, John M, Khurana C, et al. Sustained reduction of in- stent neointimal growth with the use of a novel systemic nanop- article paclitaxel[J]. Circulation, 2002, 106: 1195- 1198.
[60] Banai S, Chorny M, Gertz SD, et al. Locally delivered nanoencap- sulated tyrphostin(AGL-2043) reduces neointima formation in balloon- injured rat carotid and stented porcine coronary arteries[J]. Biomaterials, 2005, 26: 451- 461.
[61] Graziadei IW, Sandmueller H, Waldenberger P, et al. Chemoem-bolization followed by liver transplantation for hepatocellular carcinoma impedes tumor progression while on the waiting list and leads to excellent outcome[J]. Liver Transpl, 2003, 9: 557- 563.
[62] 滕皋军, 卢 勤. 介入放射学的机遇: 介入技术在生物靶向治疗中的应用与优势[J]. 介入放射学杂志, 2007, 16: 73- 74.

相似文献/References:

[1]李安琪,尹化斌,岳巍,等.老年食管癌的金属支架姑息性治疗[J].介入放射学杂志,2000,(03):167.
[2]曾群,王军女.部分脾动脉栓塞治疗脾功能亢进的护理[J].介入放射学杂志,2000,(03):188.
[3]张根山,周胜利,张旭.原发性肝癌合并脾功能亢进的介入治疗[J].介入放射学杂志,2000,(03):183.
[4]吴恩惠.评《数字减影血管造影诊断学》[J].介入放射学杂志,2000,(04):209.
[5]高斌,王伟昱.套管式活检枪与抽吸式穿刺针在CT导引下穿刺的对比研究[J].介入放射学杂志,2000,(04):228.
[6]李麟荪.积极开展非血管性介入放射学[J].介入放射学杂志,2000,(04):193.
[7]啜振华,刘荣欣,苑静波,等.输卵管妊娠的介入治疗[J].介入放射学杂志,1997,(02):82.
[8]吕福华,颜志平,王建华,等.肝总动脉单面活瓣闭塞[J].介入放射学杂志,1997,(03):179.
[9]程永德.介入放射学呼唤规范化管理[J].介入放射学杂志,1997,(03):127.
[10]王执民,吴智群.中晚期原发性肝癌DSA表现的分型及其临床意义[J].介入放射学杂志,1997,(03):133.

备注/Memo

备注/Memo:
(收稿日期:2015-02-07)
(本文编辑:边 佶)
更新日期/Last Update: 2016-01-22