[1]赵真真,王忠敏,陆 健,等.125I粒子持续低剂量率照射和60Co γ射线高剂量率照射对H1299细胞生物学效应的比较研究[J].介入放射学杂志,2015,(08):702-706.
 ZHAO Zhen- zhen,WANG Zhong- min,LU Jian,et al.The biological effect of 125I seeds continuous low dose rate irradiation on H1299 cell line: comparison with 60Co γ- ray high dose rate irradiation[J].journal interventional radiology,2015,(08):702-706.
点击复制

125I粒子持续低剂量率照射和60Co γ射线高剂量率照射对H1299细胞生物学效应的比较研究()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
期数:
2015年08期
页码:
702-706
栏目:
实验研究
出版日期:
2015-08-25

文章信息/Info

Title:
The biological effect of 125I seeds continuous low dose rate irradiation on H1299 cell line: comparison with 60Co γ- ray high dose rate irradiation
作者:
赵真真 王忠敏 陆 健 茅爱武 刘芬菊
Author(s):
ZHAO Zhen- zhen WANG Zhong- min LU Jian MAO Ai- wu LIU Fen- ju
Department of Radiology, Affiliated Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
关键词:
【关键词】 125I粒子持续低剂量率照射 60Co γ射线高剂量率照射 非小细胞肺癌 凋亡
文献标志码:
A
摘要:
【摘要】 目的 探讨125I粒子持续低剂量率(CLDR)内照射和60Co γ射线高剂量率(HDR)外照射对非小细胞肺癌(NSCLC)细胞株H1299的细胞生物学效应。方法 H1299细胞处于指数生长期时分别行125I粒子CLDR照射和60Co γ射线HDR照射;克隆形成实验检测细胞存活分数,流式细胞术检测细胞周期和细胞凋亡率,Western blot检测Bax、Bcl- 2蛋白表达水平。结果 随着照射剂量增大,125I粒子CLDR照射比60Co γ射线HDR照射抑制H1299细胞增殖效应更明显。照射剂量为4 Gy时125I粒子组H1299细胞G2/M期百分比、细胞凋亡率分别为(21.77±0.31)%、(13.79±0.50)%;同样照射剂量下,60Co照射组H1299细胞G2/M期百分比仅为(18.85±0.99)%,细胞凋亡率仅为(8.79±0.22)%(P<0.05)。125I粒子CLDR照射明显上调Bax蛋白表达,同时下调Bcl- 2蛋白表达。结论 125I粒子CLDR内照射比60Co γ射线HDR外照射抑制H1299细胞增殖效应更明显。Bcl- 2/Bax蛋白比失衡在125I粒子CLDR照射抗肿瘤效应中可能发挥重要作用。

参考文献/References:

[参 考 文 献]
[1] Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014[J]. CA Cancer J Clin, 2014, 64: 9- 29.
[2] Fidias P, Novello S. Strategies for prolonged therapy in patients with advanced non- small- cell lung cancer[J]. J Clin Oncol, 2010, 28: 5116- 5123.
[3] Whitehurst AW, Bodemann BO, Cardenas J, et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells[J]. Nature, 2007, 446: 815- 819.
[4] Sachs RK, Chen AM, Brenner DJ. Review: proximity effects in the production of chromosome aberrations by ionizing radiation[J]. Int J Radiat Biol, 1997, 71: 1- 19.
[5] Karakoyun- Celik O, Yalman D, Bolukbasi Y, et al. Postoperative radiotherapy in the management of resected non- small- cell lung carcinoma: 10 years’ experience in a single institute[J]. Int J Radiat Oncol Biol Phys, 2010, 76: 433- 439.
[6] Lehnert S, Reniers B, Verhaegen F. Relative biologic effective- ness in terms of tumor response of 125I implants compared with 60Co gamma rays[J]. Int J Radiat Oncol Biol Phys, 2005, 63: 224- 229.
[7] 骆红蕾, 喻晓娟, 李 进, 等. 125I粒子植入联合化疗治疗同期放化疗后局部复发的Ⅲ期非小细胞肺癌[J]. 中华核医学与分子影像杂志, 2013, 33: 195- 198.
[8] 陆 健, 郑云峰, 张 欢, 等. CT导引下植入125I粒子治疗19例晚期胰腺癌的疗效观察[J]. 介入放射学杂志, 2010, 19: 550- 553.
[9] 彭晶晶, 谭 勇, 谭 艳, 等. 125I粒子植入治疗结肠直肠癌肝转移[J]. 介入放射学杂志, 2012, 21: 773- 776.
[10] Nishizaki M, Meyn RE, Levy LB, et al. Synergistic inhibition of human lung cancer cell growth by adenovirus- mediated wild- type p53 gene transfer in combination with docetaxel and radiation therapeutics in vitro and in vivo[J]. Clin Cancer Res, 2001, 7: 2887- 2897.
[11] Chen H, Bao Y, Yu L, et al. Comparison of cellular damage response to low- dose- rate 125I seed irradiation and high- dose- rate gamma irradiation in human lung cancer cells[J]. Brachytherapy, 2012, 11: 149- 156.
[12] Qu A, Wang H, Li J, et al. Biological effects of 125I seeds radiation on A549 lung cancer cells: G2/M arrest and enhanced cell death[J]. Cancer Invest, 2014, 32: 209- 217.
[13] Iliakis G, Wang Y, Guan J, et al. DNA damage checkpoint control in cells exposed to ionizing radiation[J]. Oncogene, 2003, 22: 5834- 5847.
[14] Kastan MB, Bartek J. Cell- cycle checkpoints and cancer[J]. Nature, 2004, 432: 316- 323.
[15] Wang J, Wang J, Liao A, et al. The direct biologic effects of radioactive 125I seeds on pancreatic cancer cells PANC- 1, at continuous low- dose rates[J]. Cancer Biother Radiopharm, 2009, 24: 409- 416.
[16] Liao A, Wang J, Wang J, et al. Relative biological effectiveness and cell- killing efficacy of continuous low- dose- rate 125I seeds on prostate carcinoma cells in vitro[J]. Integr Cancer Ther, 2010, 9: 59- 65.
[17] Geyer RK, Nagasawa H, Little JB, et al. Role and regulation of p53 during an ultraviolet radiation- induced G1 cell cycle arrest[J]. Cell Growth Differ, 2000, 11: 149- 156.
[18] Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl- 2 family members and mitochondrial dynamics[J]. Dev Cell, 2011, 21: 92- 101.
[19] Ma JX, Jin ZD, Si PR, et al. Continuous and low- energy 125I seed irradiation changes DNA methyltransferases expression patterns and inhibits pancreatic cancer tumor growth[J]. J Exp Clin Cancer Res, 2011, 30: 35.
[20] Groeger AM, Esposito V, De Luca A, et al. Prognostic value of immunohistochemical expression of p53, bax, Bcl- 2 and Bcl- xL in resected non- small- cell lung cancers[J]. Histopathology, 2004, 44: 54- 63.
[21] Walensky LD. BCL- 2 in the crosshairs: tipping the balance of Life and death[J]. Cell Death Differ, 2006, 13: 1339- 1350.

备注/Memo

备注/Memo:
(收稿日期:2015-02-16)
(本文编辑:边 佶)
更新日期/Last Update: 2015-08-23