[1]彭 湃,朱 虹,刘永晟,等.神经超声在急性缺血性卒中机械性血栓切除术后监测的应用进展[J].介入放射学杂志,2024,33(02):202-207.
 PENG Pai,ZHU Hong,LIU Yongsheng,et al.Progress in the application of neurosonography in monitoring the patients with acute ischemic stroke after receiving mechanical thrombectomy[J].journal interventional radiology,2024,33(02):202-207.
点击复制

神经超声在急性缺血性卒中机械性血栓切除术后监测的应用进展()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
33
期数:
2024年02
页码:
202-207
栏目:
综述
出版日期:
2024-03-08

文章信息/Info

Title:
Progress in the application of neurosonography in monitoring the patients with acute ischemic stroke after receiving mechanical thrombectomy
作者:
彭 湃 朱 虹 刘永晟 王铭义 刘勇建 王 峰
Author(s):
PENG Pai ZHU Hong LIU Yongsheng WANG Mingyi LIU Yongjian WANG Feng.
Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116000, China
关键词:
【关键词】 神经超声 急性缺血性卒中 机械性血栓切除术 进展
文献标志码:
A
摘要:
【摘要】 机械性血栓切除术(MT)是目前针对大血管闭塞所致的急性缺血性卒中(AIS)血管再通最有效的手段。但是MT术后对患者并发症的监测及管理成为目前棘手的问题,也受到广泛的关注。神经超声技术以无创、灵活及快速诊断等优势在脑血流动力学和结构病理学评估监测领域中已建立完善的体系。随着技术和设备的更新,针对AIS患者MT术后开启了无创监测颅内压、脑血流自动调节、颅内出血监测及其他占位性病变的导向模式,逐步成为MT术后管理的重要工具。本文对AIS患者MT术后神经超声监测技术的应用发展进行综述,目的是为临床实施前瞻性干预措施提供依据,使MT术后管理达到最大获益化,减低AIS患者病死率。

参考文献/References:

[1] Liu H, He Y, Zhou T, et al. Evaluation of using a double helical, closed- cell stent- retriever(Skyflow) for thrombectomy procedures in acute arterial occlusion: a preclinical study and a clinical trial[J]. J Interv Med, 2022, 5: 190- 195.
[2] Ohta T, Tanaka K, Koge J, et al. Stent retriever or aspiration catheter alone vs their combination as the first- line thrombectomy in acute stroke[J]. Neurosurgery, 2023, 92: 159- 166.
[3] 吕晓颖,王承汉,王正则,等. 急性缺血性脑卒中取栓术后出血转化相关因素研究进展[J]. 介入放射学杂志, 2022, 31:310- 314.
[4] 吉林省医学会神经病学分会,吉林省卒中学会,杨 弋,等. 动态脑血流自动调节功能评估在神经系统疾病中的临床应用专家共识(2021)[J]. 中华脑血管病杂志(电子版), 2021, 15:140- 152.
[5] 中国医师协会神经内科医师分会神经超声专业委员会, 中华医学会神经病学分会神经影像协作组. 中国神经超声的操作规范[J]. 中华医学杂志, 2017, 97:3043- 3050.
[6] Vu EL, Brady K, Hogue CW. High- resolution perioperative cerebral blood flow autoregulation measurement: a practical and feasible approach for widespread clinical monitoring[J]. Br J Anaesth, 2022, 128:405- 408.
[7] Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries[J]. J Neurosurg, 1982, 57: 769-774.
[8] Robba C, Goffi A, Geeraerts T, et al. Brain ultrasonography: methodology, basic and advanced principles and clinical applications. A narrative review[J]. Intensive Care Med, 2019, 45: 913- 927.
[9] Bertuetti R, Gritti P, Pelosi P, et al. How to use cerebral ultrasound in the ICU[J]. Minerva Anestesiol, 2020, 86: 327- 340.
[10] Li Q, Hua Y, Liu J, et al. Intraoperative transcranial Doppler monitoring predicts the risk of cerebral hyperperfusion syndrome after carotid endarterectomy[J]. World Neurosurg, 2022, 165:e571- e580.
[11] 刘钦晨,贾振宇,赵林波,等. 梗死核心容积预测急性前循环大血管闭塞患者机械取栓术后出血转化的价值[J]. 介入放射学杂志, 2021, 30:756- 760.
[12] Blanco P, Blaivas M. Applications of transcranial color- coded sonography in the emergency department[J]. J Ultrasound Med, 2017, 36: 1251- 1266.
[13] M?覿urer M, Shambal S, Berg D, et al. Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color- coded duplex- sonography[J]. Stroke, 1998, 29: 2563- 2567.
[14] Schlachetzki F, Herzberg M, H?觟lscher T, et al. Transcranial ultrasound from diagnosis to early stroke treatment: part 2: prehospital neurosonography in patients with acute stroke: the Regensburg stroke mobile project[J]. Cerebrovasc Dis, 2012, 33: 262- 271.
[15] Chernyshev OY, Garami Z, Calleja S, et al. Yield and accuracy of urgent combined carotid/transcranial ultrasound testing in acute cerebral ischemia[J]. Stroke, 2005, 36: 32- 37.
[16] Ragoschke- Schumm A, Walter S. DAWN and DEFUSE- 3 trials: is time still important?[J]. Radiologe, 2018, 58: 20- 23.
[17] Castro P, Azevedo E, Sorond F. Cerebral autoregulation in stroke[J]. Curr Atheroscler Rep, 2018, 20: 37.
[18] Itoh T, Matsumoto M, Handa N, et al. Rate of successful recording of blood flow signals in the middle cerebral artery using transcranial Doppler sonography[J]. Stroke, 1993, 24: 1192-1195.
[19] Kondziella D, Cortsen M, Eskesen V, et al. Update on acute endovascular and surgical stroke treatment[J]. Acta Neurol Scand, 2013, 127:1- 9.
[20] Spencer MP. Transcranial Doppler monitoring and causes of stroke from carotid endarterectomy[J]. Stroke, 1997, 28: 685- 691.
[21] Ackerstaff RG, Moons KG, van de Vlasakker CJ, et al. Association of intraoperative transcranial Doppler monitoring variables with stroke from carotid endarterectomy[J]. Stroke, 2000, 31: 1817- 1823.
[22] Toyama S, Sakai H, Ito S, et al. Cerebral hypoperfusion during pediatric cardiac surgery detected by combined bispectral index monitoring and transcranial Doppler ultrasonography[J]. J Clin Anesth, 2011, 23: 498- 501.
[23] Razumovsky AY, Jahangiri FR, Balzer J, et al. ASNM and ASN joint guidelines for transcranial Doppler ultrasonic monitoring: an update[J]. J Neuroimaging, 2022, 32: 781- 797.
[24] Prosperi- Porta G, Ronksley P, Kiamanesh O, et al. Prognostic value of echocardiography- derived right ventricular dysfunction in haemodynamically stable pulmonary embolism: a systematic review and meta- analysis[J]. Eur Respir Rev, 2022, 31: 220120.
[25] Robba C, Bacigaluppi S, Cardim D, et al. Non- invasive assessment of intracranial pressure[J]. Acta Neurol Scand, 2016, 134: 4- 21.
[26] Fargen KM, Kittel C, Curry BP, et al. Mechanical thrombectomy decision making and prognostication: Stroke treatment Assessments prior to Thrombectomy In Neurointervention(SATIN) study[J]. J Neurointerv Surg, 2023, 15:e381- e387.
[27] Dinsmore M, Venkatraghavan L. Clinical applications of point- of- care ultrasound in brain injury: a narrative review[J]. Anaesthesia, 2022, 77(Suppl 1):69- 77.
[28] Cardim D, Griesdale DE, Ainslie PN, et al. A comparison of non- invasive versus invasive measures of intracranial pressure in hypoxic ischaemic brain injury after cardiac arrest[J]. Resuscitation, 2019, 137: 221- 228.
[29] Lau VI, Jaidka A, Wiskar K, et al. Better with ultrasound: transcranial Doppler[J]. Chest, 2020, 157: 142- 150.
[30] Gosling RG, King DH. Arterial assessment by Doppler- shift ultrasound[J]. Proc R Soc Med, 1974, 67: 447- 449.
[31] Bellner J, Romner B, Reinstrup P, et al. Transcranial Doppler sonography pulsatility index(PI) reflects intracranial pressure(ICP)[J]. Surg Neurol, 2004, 62: 45- 51.
[32] Zweifel C,Czosnyka M,Carrera E,et al. Reliability of the blood flow velocity pulsatility index for assessment of intracranial and cerebral perfusion pressures in head- injured patients[J]. Neuro-surgery, 2012, 71: 853- 61.
[33] Dubourg J, Javouhey E, Geeraerts T, et al. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta- analysis[J]. Intensive Care Med, 2011, 37: 1059- 1068.
[34] Das SK, Shetty SP, Sen KK. A novel triage tool: optic nerve sheath diameter in traumatic brain injury and its correlation to Rotterdam computed tomography(CT) scoring[J]. Pol J Radiol, 2017, 82: 240- 243.
[35] Geeraerts T, Newcombe VF, Coles JP, et al. Use of T2- weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure[J]. Crit Care, 2008, 12: R114.
[36] Bauerle J, Lochner P, Kaps M, et al. Intra- and interobsever reliability of sonographic assessment of the optic nerve sheath diameter in healthy adults[J]. J Neuroimaging, 2012, 22: 42- 45.
[37] Dinsmore M, Han JS, Fisher JA, et al. Effects of acute controlled changes in end- tidal carbon dioxide on the diameter of the optic nerve sheath: a transorbital ultrasonographic study in healthy volunteers[J]. Anaesthesia, 2017, 72: 618- 623.
[38] Robba C, Cardim D, Tajsic T, et al. Ultrasound non- invasive measurement of intracranial pressure in neurointensive care: a prospective observational study[J]. PLoS Med, 2017, 14: e1002356.
[39] Cardim D, Robba C, Donnelly J, et al. Prospective study on noninvasive assessment of intracranial pressure in traumatic brain- injured patients: comparison of four methods[J]. J Neurotrauma, 2016, 33: 792- 802.
[40] Seidel G, Gerriets T, Kaps M, et al. Dislocation of the third ventricle due space- occupying stroke evaluated by transcranial duplex sonography[J]. J Neuroimaging, 1996, 6: 227- 230.
[41] Motuel J, Biette I, Srairi M, et al. Assessment of brain midline shift using sonography in neurosurgical ICU patients[J]. Crit Care, 2014, 18: 676.
[42] Llompart Pou JA, Abadal Centellas JM, Palmer Sans M, et al. Monitoring midline shift by transcranial color- coded sonography in traumatic brain injury. A comparison with cranial computerized tomography[J]. Intensive Care Med, 2004, 30: 1672- 1675.
[43] Caricato A, Pitoni S, Montini L, et al. Echography in brain imaging in intensive care unit: state of the art[J]. World J Radiol, 2014, 6: 636- 642.
[44] Ogoh S,Sugawara J,Shibata S. Does cardiac function affect cerebral blood flow regulation?[J]. J Clin Med, 2022, 11: 6043.
[45] Czosnyka M, Smielewski P, Kirkpatrick P, et al. Monitoring of cerebral autoregulation in head- injured patients[J]. Stroke, 1996, 27: 1829- 1834.
[46] Robba C, Cardim D, Sekhon M, et al. Transcranial Doppler: a stethoscope for the brain- neurocritical care use[J]. J Neurosci Res, 2018, 96: 720- 730.
[47] 李 凡,邢海英,金海强,等. 脑血流自动调节研究发展史[J].中国现代神经疾病杂志, 2021, 21:9- 13.
[48] Naqvi J, Yap KH, Ahmad G, et al. Transcranial doppler ultrasound: a review of the physical principles and major applications in critical care[J]. Int J Vasc Med, 2013, 2013: 629378.
[49] Chang JJ, Tsivgoulis G, Katsanos AH, et al. Diagnostic accuracy of transcranial Doppler for brain death confifirmation: systematic review and meta- analysis[J]. AJNR Am J Neuroradiol, 2016, 37: 408- 414.

备注/Memo

备注/Memo:
(收稿日期:2022- 12- 07)
(本文编辑:茹 实)
更新日期/Last Update: 2024-03-08