[1]王双静,熊 江.主动脉夹层的实验与计算生物力学研究进展[J].介入放射学杂志,2023,32(07):699-704.
 WANG Shuangjing,XIONG Jiang..Research advance in experimental and computational biomechanics of aortic dissection[J].journal interventional radiology,2023,32(07):699-704.
点击复制

主动脉夹层的实验与计算生物力学研究进展()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
32
期数:
2023年07
页码:
699-704
栏目:
综述
出版日期:
2023-07-31

文章信息/Info

Title:
Research advance in experimental and computational biomechanics of aortic dissection
作者:
王双静 熊 江
Author(s):
WANG Shuangjing XIONG Jiang.
Department of Vascular Surgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
关键词:
【关键词】 主动脉夹层 生物力学 力学性能 数值模拟
文献标志码:
A
摘要:
【摘要】 实验与计算生物力学已成为主动脉夹层(artic dissection, AD)研究中的重要方法,生物力学实验研究中常用拉伸实验分析血管壁组织不同成分的力学属性,揭示了AD发生及发展的可能机制。AD的治疗和预后研究往往具有挑战性,目前正在探索使用个性化计算模型作为改善临床结果的工具。借助计算生物力学研究方法,通过构建三维模型来模拟血流,从血流动力学的角度研究AD是一种很有前景的方法。计算流体力学(computational fluid dynamics, CFD) 技术可以个性化仿真患者主动脉内血流状况,为研究AD的形成过程、诊断治疗和预测疾病发展提供了帮助,但其为刚性壁模拟,结果具有一定的局限性。流固耦合(fluid-structure interaction, FSI)模型可模拟AD真实的血管壁变形、血管内血流状态和膜片运动,为评估AD的血流动力学提供了新视角。然而,临床医生从血管生物力学角度对AD的认识不足,尚未实现临床广泛应用,现结合现有文献就AD的实验与计算生物力学研究进展作一综述。

参考文献/References:

[1] Yuan C, Ni LH, Zhang CJ, et al. Vascular calcification: new insights into endothelial cells[J]. Microvasc Res, 2021, 134: 104105.
[2] Sanyour HJ, Rickel AP, Hong Z. The interplay of membrane cholesterol and substrate on vascular smooth muscle biomechanics[J]. Curr Top Memb, 2020, 86: 279- 299.
[3] Guo S, Chen H, Wang M. Research on the dislocation differences of CoCrFeMnNi with different local chemical orders during room temperature tensile test[J]. J Alloys Compd, 2021, 868: 159215.
[4] Kermani G, Hemmasizadeh A, Assari S, et al. Investigation of inhomogeneous and anisotropic material behavior of porcine thoracic aorta using nano- indentation tests[J]. J Mech Behav Biomed Mater, 2017, 69: 50- 56.
[5] Tian L, Henningsen J, Salick MR, et al. Stretch calculated from grip distance accurately approximates mid- specimen stretch in large elastic arteries in uniaxial tensile tests[J]. J Mech Behav Biomed Mater, 2015, 47: 107- 113.
[6] Song JL, Yang JH, Liu FJ, et al. Ultra- high temperature mechanical property test of C/C composites by a digital image correlation method based on an active laser illumination and background radiation suppressing method with multi- step filtering[J]. Appl Opt, 2019, 58: 6569- 6580.
[7] Genovese K, Badel P, Cavinato C, et al. Multi- view digital image correlation systems for in vitro testing of arteries from mice to humans[J]. Exp Mech, 2021, 61: 1455- 1472.
[8] Osada H, Kyogoku M, Ishidou M, et al. Aortic dissection in the outer third of the media: what is the role of the vasa vasorum in the triggering process?[J]. Eur J Cardiothorac Surg, 2013, 43: e82- e88.
[9] Osada H, Minatoya K. Updates in aortic wall pathology[J]. Surg Today,2021, Epub ahead of print.
[10] Giudici A, Khir AW, Szafron JM, et al. From uniaxial testing of isolated layers to a tri- layered arterial wall: a novel constitutive modelling framework[J]. Ann Biomed Eng, 2021, 49: 2454- 2467.
[11] Wang R, Yu X, Gkousioudi A, et al. Effect of glycation on interlamellar bonding of arterial elastin[J]. Exp Mech, 2021, 61: 81- 94.
[12] Li S, Zhang L, Zhu G, et al. Diabetes mellitus lowers the risk of aortic dissection: a systematic review and meta- analysis[J]. Ann Vasc Surg, 2021, 74: 209- 219.
[13] Cocciolone AJ, Hawes JZ, Staiculescu MC, et al. Elastin, arterial mechanics, and cardiovascular disease[J]. Am J Physiol Heart Circ Physiol, 2018, 315: H189- H205.
[14] Pena JA,Martinez MA,Pena E. Layer- specific residual deforma- tions and uniaxial and biaxial mechanical properties of thoracic porcine aorta[J]. J Mech Behav Biomed Mater, 2015, 50: 55- 69.
[15] 李晓娜,陈凌峰,高志鹏,等. 猪降主动脉腹侧与背侧组织力学性能的实验研究[J]. 生物医学工程学杂志, 2019, 36:596- 603.
[16] Myneni M,Sridhar RL,Rajagopal KR,et al. Experimental investi- gation of the anisotropic mechanical response of the porcine thoracic aorta[J]. Ann Biomed Eng, 2022, 50: 452- 466.
[17] 张 智,忻元峰,童建华. 主动脉夹层的实验与计算生物力学分析[J]. 医用生物力学, 2021, 36:52.
[18] Bonfanti M,Franzetti G,Homer- Vanniasinkam S,et al. A combined in vivo, in vitro, in silico approach for patient- specific haemody-namic studies of aortic dissection[J]. Ann Biomed Eng, 2020, 48: 2950- 2964.
[19] Yu X, Suki B, Zhang Y. Avalanches and power law behavior in aortic dissection propagation[J]. Sci Adv, 2020, 6: eaaz1173.
[20] Ban E, Cavinato C, Humphrey JD. Differential propensity of dissection along the aorta[J]. Biomech Model Mechanobiol, 2021, 20: 895- 907.
[21] Ban E, Cavinato C, Humphrey JD. Critical pressure of intramural delamination in aortic dissection[J]. Ann Biomed Eng, 2022, 50: 183- 194.
[22] Yin ML,Ban E,Rego BV,et al. Simulating progressive intramural damage leading to aortic dissection using DeepONet: an operator- regression neural network[J]. J R Soc Interface, 2022, 19: 20210670.
[23] Armour CH, Guo BL, Saitta S, et al. Evaluation and verification of patient- specific modelling of type B aortic dissection[J]. Comput Biol Med, 2022, 140: 105053.
[24] Chen DD, Wei JY, Deng YM, et al. Virtual stenting with simplex mesh and mechanical contact analysis for real- time planning of thoracic endovascular aortic repair[J]. Theranostics, 2018, 8: 5758- 5771.
[25] Diaz- Zuccarini V,Bonfanti M,Franzetti G,et al. Virtual TEVAR: overcoming the roadblocks of in- silico tools for aortic dissection treatment[J]. Theranostics, 2018, 8: 6384- 6385.
[26] Chen DD, Liang SC, Li ZF, et al. A mock circulation loop for in vitro hemodynamic evaluation of aorta: application in aortic dissection[J]. J Endovasc Ther, 2022, 29: 132- 142.
[27] Morris L, Tierney P, Hynes N, et al. An in vitro assessment of the haemodynamic features occurring within the true and false lumens separated by a dissection flap for a patient- specific type B aortic dissection[J]. Front Cardiovasc Med, 2022, 9: 797829.
[28] Xu H,Li Z,Dong H,et al. Hemodynamic parameters that may predict false- lumen growth in type- B aortic dissection after endo- vascular repair: a preliminary study on long- term multiple follow- ups[J]. Med Eng Phys, 2017, 50: 12- 21.
[29] Meng Z, Ma T, Cai Y, et al. Numerical modeling and simulations of type B aortic dissection treated by stent- grafts with different oversizing ratios[J]. Artif Organs, 2020, 44: 1202- 1210.
[30] Ma T, Zhou M, Meng ZY, et al. Computational investigation and histopathological validation of interaction between stent graft and aorta in retrograde type a dissection after TEVAR in canine models[J]. J Endovasc Ther, 2022, 29: 275- 282.
[31] Ma T, Dong ZH, Wang S, et al. Computational investigation of interaction between stent graft and aorta in retrograde type A dissection after thoracic endovascular aortic repair for type B aortic dissection[J]. J Vasc Surg, 2018, 68: 14S- 21S.e2.
[32] Menichini C, Xu XY. Mathematical modeling of thrombus formation in idealized models of aortic dissection: initial findings and potential applications[J]. J Math Biol, 2016, 73: 1205- 1226.
[33] Abazari MA, Rafieianzab D, Soltani M, et al. The effect of beta- blockers on hemodynamic parameters in patient- specific blood flow simulations of type- B aortic dissection:a virtual study[J]. Sci Rep, 2021, 11: 16058.
[34] Zhu Y,Mirsadraee S,Asimakopoulos G,et al. Association of hemo-dynamic factors and progressive aortic dilatation following type A aortic dissection surgical repair[J]. Sci Rep, 2021, 11: 11521.
[35] Rudenick PA,Segers P,Pineda V,et al. False lumen flow patterns and their relation with morphological and biomechanical characteristics of chronic aortic dissections. computational model compared with magnetic resonance imaging measurements[J]. PLoS One, 2017, 12: e0170888.
[36] Aghilinejad A, Wei H, Magee GA, et al. Model- based fluid- structure interaction approach for evaluation of thoracic endovas- cular aortic repair endograft length in type B aortic dissection[J]. Front Bioeng Biotechnol, 2022, 10: 825015.
[37] Alimohammadi M,Sherwood JM,Karimpour M,et al. Aortic dissection simulation models for clinical support: fluid- structure interaction vs. rigid wall models[J]. Biomed Eng Online, 2015, 14: 34.
[38] Zhu Y,Mirsadraee S,Rosendahl U,et al. Fluid- structure interaction simulations of repaired type a aortic dissection: a comprehensive comparison with rigid wall models[J]. Front Physiol, 2022, 13: 913457.
[39] Baumler K, Vedula V, Sailer AM, et al. Fluid- structure interaction simulations of patient- specific aortic dissection[J]. Biomech Model Mechanobiol, 2020, 19: 1607- 1628.
[40] Chong MY, Gu B, Chan BT, et al. Effect of intimal flap motion on flow in acute type B aortic dissection by using fluid- structure interaction[J]. Int J Numer Method Biomed Eng, 2020, 36: e3399.
[41] Qiao Y, Zeng Y, Ding Y, et al. Numerical simulation of two- phase non- newtonian blood flow with fluid- structure interaction in aortic dissection[J]. Comput Methods Biomech Biomed Engin, 2019, 22: 620- 630.
[42] Birjiniuk J, Timmins LH, Young M, et al. Pulsatile flow leads to intimal flap motion and flow reversal in an in vitro model of type B aortic dissection[J]. Cardiovasc Eng Technol, 2017, 8: 378- 389.
[43] Ong CW, Wee I, Syn N, et al. Computational fluid dynamics modeling of hemodynamic parameters in the human diseased aorta: a systematic review[J]. Ann Vasc Surg, 2020, 63: 336- 381.
[44] Dillon- Murphy D,Noorani A,Nordsletten D, et al. Multi- modality image- based computational analysis of haemodynamics in aortic dissection[J]. Biomech Model Mechanobiol, 2016, 15: 857- 876.
[45] Chen HY,Peelukhana SV,Berwick ZC,et al. Editor’s choice- fluid- structure interaction simulations of aortic dissection with bench validation[J]. Eur J Vasc Endovasc Surg, 2016, 52: 589- 595.
[46] Qiao Y, Mao L, Zhu T, et al. Biomechanical implications of the fenestration structure after thoracic endovascular aortic repair[J]. J Biomech, 2020, 99: 109478.
[47] Chong MY, Gu B, Armour CH, et al. An integrated fluid- structure interaction and thrombosis model for type B aortic dissection[J]. Biomech Model Mechanobiol, 2022, 21: 261- 275.
[48] Keramati H, Birgersson E, Kim S, et al. Using a reduced- order model to investigate the effect of the heart rate on the aortic dissection[J]. Int J Numer Method Biomed Eng, 2022, 38: e3596.
[49] Li D, Zheng T, Liu Z, et al. Influence of distal re- entry tears on false lumen thrombosis after thoracic endovascular aortic repair in type B aortic dissection patients: a computational fluid dynamics simulation[J]. Cardiovasc Eng Technol, 2021, 12: 426- 437.
[50] 林奕城,郭 立,陈娜娜. Stanford B型主动脉夹层计算机仿真研究进展[J]. 介入放射学杂志, 2021, 30:1296- 1299.

相似文献/References:

[1]王茂华,金 星,吴学君. 腔内修复术成功救治外伤性主动脉夹层伴截瘫一例[J].介入放射学杂志,2012,(12):1059.
 WANG Mao? hua,JIN Xing,WU Xue? jun.. The traumatic aortic dissection accompanied by paraplegia successfully treated with endovascular repair: report of one case[J].journal interventional radiology,2012,(07):1059.
[2]张晔青,李晓强.Stanford A型夹层并发右下肢及肠缺血误诊一例[J].介入放射学杂志,2014,(01):11.
 ZHANG Ye? qing,LI Xiao? qiang.. Misdiagnosis of Stanford type A aortic dissection complicated by ischemia of right lower limb and intestine: report of one case[J].journal interventional radiology,2014,(07):11.
[3]戚光祖,邴学华. 腔内修复联合动脉旁路术治疗近端锚定区不足的主动脉夹层[J].介入放射学杂志,2013,(09):727.
 QI Guang? zu,BING Xue? hua.. Endovascular repair combined with arterial bypass for the treatment of aortic dissection with insufficient proximal anchorage zone[J].journal interventional radiology,2013,(07):727.
[4]王志伟,王家祥,李 震,等. 无钙化B型主动脉壁间血肿的治疗[J].介入放射学杂志,2014,(03):210.
 WANG Zhi? wei,WANG Jia? xiang,LI Zhen,et al. Conservative treatment of type B aortic intramural hematoma with no calcification[J].journal interventional radiology,2014,(07):210.
[5]侯钦茂,冯家烜,张荣杰,等.Stanford B型主动脉夹层腔内介入治疗时机对预后的影响 [J].介入放射学杂志,2018,27(04):310.
 HOU Qinmao,FENG Jiaxuan,ZHANG Rongjie,et al.The effect of timing of TEVAR on the prognosis of patients with Stanford type B aortic dissection [J].journal interventional radiology,2018,27(07):310.
[6]边 云,王 莉,陆建平,等.640层容积CT对Stanford B型主动脉夹层腔内隔绝术后随访的应用价值[J].介入放射学杂志,2012,(11):912.
[7]周静文,陈德基,林少芒,等.左锁骨下动脉“烟囱”技术在胸主动脉夹层腔内修复术中的应用[J].介入放射学杂志,2015,(08):668.
 ZHOU Jing- wen,CHEN De- ji,LIN Shao- mang,et al.The application of “chimney” technique of left subclavian artery in performing endovascular repair procedure for Stanford type B aortic dissection[J].journal interventional radiology,2015,(07):668.
[8]保广鹤,李焕祥,马彦寿.裸支架烟囱技术治疗主动脉夹层伴左颈总动脉破口[J].介入放射学杂志,2015,(09):767.
 BAO Guang- he,LI Huan- xiang,MA Yan- shou.The application of bare- stent“chimney” technique in treating aortic dissection complicated by left common carotid rupture[J].journal interventional radiology,2015,(07):767.
[9]吕俊远,王 雷,杨春卿,等.中心线法测量B型主动脉夹层锚定区的初步研究 [J].介入放射学杂志,2015,(10):857.
 LV Jun- yuan,WANG Lei,YANG Chun- qing,et al.Centerline analysis for the measurement of aortic diameter at proximal landing zone in type B aortic dissection: a preliminary study[J].journal interventional radiology,2015,(07):857.
[10]逯党辉,翟水亭,李天晓,等.复合手术治疗Stanford B型胸主动脉夹层 [J].介入放射学杂志,2015,(10):897.
 LU Dang-hui,ZHAI Shui-ting,LI Tian-xiao,et al.Hybrid operation for the treatment of Stanford type B aortic dissection[J].journal interventional radiology,2015,(07):897.

备注/Memo

备注/Memo:
(收稿日期:2022- 05- 26)
(本文编辑:茹 实)
更新日期/Last Update: 2023-07-31