[1]陈 川,周 耕,卢 川,等.三维打印快速仿形技术在介入医学领域的应用价值[J].介入放射学杂志,2016,(08):734-737.
 CHEN Chuan,ZHOU Geng,LU Chuan,et al.The application value of three-dimensional printing rapid prototyping technology in interventional medical field [J].journal interventional radiology,2016,(08):734-737.
点击复制

三维打印快速仿形技术在介入医学领域的应用价值 ()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
期数:
2016年08期
页码:
734-737
栏目:
综述
出版日期:
2016-08-25

文章信息/Info

Title:
The application value of three-dimensional printing rapid prototyping technology in interventional medical field


作者:
陈 川 周 耕 卢 川 程永德
Author(s):
CHEN Chuan ZHOU Geng LU Chuan CHENG Yong-de
College of Radiology, Taishan Medical University, Taian, Shandong Province 271000, China
关键词:
【关键词】 三维打印 介入医学 应用价值
文献标志码:
A
摘要:
【摘要】 三维打印快速仿形技术是一种新兴科技,对多个行业产生了重要影响。医学领域引入三维打印模型是对传统医学的推动,为手术规划、医学教学等带来了积极作用。介入医学领域中应用三维打印模型,为疾病诊断和治疗提供了更好的辅助手段。该文就三维打印快速仿形技术在介入医学中的应用价值作一简要综述。

参考文献/References:

[1] 杨继全,戴 宁,侯丽雅.三维打印设计与制造[M].北京:科学出版社,2013:1-3.
[2] Namba K, Higaki A, Kaneko N, et al. Microcatheter shaping for intracranial aneurysm coiling using the 3-Dimensional printing rapid prototyping technology: preliminary result in the first 10 consecutive cases[J]. World Neurosurg, 2015, 84: 178-186.
[3] Yan L, Han X. 3-dimensional printing rapid prototyping for intracranial aneurysm coiling: a good example of precise medicine[J]. World Neurosurgery, 2016, 86: 8.
[4] Anderson JR, Thompson WL, Alkattan AK, et al. Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models[J]. J Neurointerv Surg, 2016, 8: 517-520.
[5] Mashiko T, Otani K, Kawano R, et al. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping[J]. World Neurosurg, 2015, 83: 351-361.
[6] Wurm G, Tomancok B, Pogady P, et al. Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note[J]. J Neurosurg, 2004, 100: 139-145.
[7] Erbano BO, Opolski AC, Olandoski M, et al. Rapid prototyping of three-dimensional biomodels as an adjuvant in the surgical planning for intracranial aneurysms[J]. Acta Cir Bras, 2013, 28: 756-761.
[8] Van Ooij P, Schneiders JJ, Marquering HA, et al. 3D cine phase-contrast MRI at 3T in intracranial aneurysms compared with patient-specific computational fluid dynamics[J]. AJNR Am J Neuroradiol, 2013, 34: 1785-1791.
[9] Xu WH, Liu J, Li ML, et al. 3D printing of intracranial artery stenosis based on the source images of magnetic resonance angiograph[J]. Ann Transl Med, 2014, 2: 74.
[10] 袁 丁, 赵纪春, 康裕建, 等. 3D打印技术辅助复杂主动脉夹层腔内治疗[J]. 中国普外基础与临床杂志, 2015, 22: 852-854.
[11] Itagaki MW. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance[J]. Diagn Interv Radiol, 2015, 21: 338-341.
[12] Watson RA. A low-cost surgical application of additive fabrication[J]. J Surg Educ, 2014, 71: 14-17.
[13] Takagi K, Nanashima A, Abo T, et al. 3-dimensional printing model of liver for operative simulation in perihilar cholangiocarcinoma[J]. Hepatogastroenterology, 2014, 61: 2315-2316.
[14] Souzaki R, Kinoshita Y, Ieiri S, et al. 3-dimensional liver model based on preoperative CT images as a tool to assist in surgical planning for hepatoblastoma in a child[J]. Pediatr Surg Int, 2015, 31: 593-596.
[15] Shiraishi I, Yamagishi M, Hamaoka K, et al. Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography[J]. Eur J Cardiothorac Surg, 2010, 37: 302-306.
[16] Vaquerizo B, Theriault-Lauzier P, Piazza N. Percutaneous transcatheter mitral valve replacement: patient-specific 3-dimensional computer-based heart model andprototyping[J]. Rev Esp Cardiol (Engl Ed), 2015, 68: 1165-1173.
[17] De Backer O, Piazza N, Banai S, et al. Percutaneous transcatheter mitral valve replacement: an overview of devices in preclinical and early clinical evaluation[J]. Circ Cardiovasc Interv, 2014, 7: 400-409.
[18] Schmauss D, Haeberle S, Hagl C, et al. 3-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience[J]. Eur J Cardiothorac Surg, 2015, 47: 1044-1052.
[19] Sodian R, Schmauss D, Schmitz C, et al. 3-dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement[J]. Ann Thorac Surg, 2009, 88: 974-978.
[20] Mine B, Pierot L, Lubicz B. Intrasaccular flow-diversion for treatment of intracranial aneurysms: the Woven EndoBridge[J]. Expert Rev Med Devices, 2014, 11: 315-325.
[21] Valverde I, Gomez G, Coserria JF, et al. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia[J]. Catheter Cardiovasc Interv, 2015, 85: 1006-1012.
[22] 刘 丹. 数字化3D打印开启创新医疗新时代——北京工业大学数字化医疗3D打印技术开发记[J]. 海峡科技与产业, 2015: 90-92.
[23] 郝永强. 3D打印技术在骨肿瘤外科中的应用及前景[A]. 第九届上海国际骨科前沿技术与临床转化学术会议论文集[C], 2015.
[24] 胡立伟, 钟玉敏. 3D打印技术在临床儿科学中的应用进展[J]. 中国医疗设备, 2015, 30: 75-77.
[25] Dhir V, Itoi T, Fockens P, et al. Novel ex vivo model for hands-on teaching of and training in EUS-guided biliary drainage: creation of "Mumbai EUS" stereolithography/3D printing bile duct prototype (with videos)[J]. Gastrointest Endosc, 2015, 81: 440-446.
[26] 方驰华, 方兆山, 范应方, 等. 三维可视化、3D打印及3D腹腔镜在肝肿瘤外科诊治中的应用[J]. 南方医科大学学报, 2015, 35: 639-645.
[27] 伍冬冬, 顾其华, 潘频华, 等. 3D打印技术引导气道狭窄支架置入术一例[J]. 中国呼吸与危重监护杂志, 2014, 13: 610-612.

相似文献/References:

[1]刘振堂.消息 陕西省放射专业委员会介入放射学组成立[J].介入放射学杂志,1996,(04):217.
[2]朱海云,程永德.介入放射学抑或介入医学[J].介入放射学杂志,2017,(07):577.
 ZHU Haiyun,CHENG Yongde.The definitions of interventional radiology and interventional medicine [J].journal interventional radiology,2017,(08):577.

备注/Memo

备注/Memo:
(收稿日期:2016-01-04)
(本文编辑:边 佶)
更新日期/Last Update: 2016-08-23