[1]张紫寅,邱冬,郑萍,等.Pipeline血流导向装置治疗复杂性颅内动脉瘤预后的影响因素及列线图预测模型构建[J].介入放射学杂志,2024,33(09):944-949.
ZHANG Ziyin,QIU Dong,ZHENG Ping,et al.The factors affecting the prognosis of complex intracranial aneurysms treated with pipeline flow-direction device and the construction of a nomogram prediction model[J].journal interventional radiology,2024,33(09):944-949.
点击复制
Pipeline血流导向装置治疗复杂性颅内动脉瘤预后的影响因素及列线图预测模型构建(
)
《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]
- 卷:
-
33
- 期数:
-
2024年09
- 页码:
-
944-949
- 栏目:
-
神经介入
- 出版日期:
-
2024-09-17
文章信息/Info
- Title:
-
The factors affecting the prognosis of complex intracranial aneurysms treated with pipeline flow-direction device and the construction of a nomogram prediction model
- 作者:
-
张紫寅; 邱冬; 郑萍; 安阳; 张涛; 唐雪松; 严智星; 李苏雯; 尹丽萍; 姜永继; 胡利刚; 唐景峰
-
- Author(s):
-
ZHANG Ziyin; QIU Dong; ZHENG Ping; AN Yang; ZHANG Tao; TANG Xuesong; YAN Zhixing; LI Suwen; YIN Liping; JIANG Yongji; HU Ligang; TANG Jingfeng.
-
Department of Interventional Radiology,Anyue County People′s Hospital,Anyue Sichuan Province 642350,China
-
- 关键词:
-
【关键词】Pipeline血流导向装置; 复杂性颅内动脉瘤; 多因素分析; 列线图预测模型
- 文献标志码:
-
A
- 摘要:
-
【摘要】目的探讨Pipeline血流导向装置(PED)治疗复杂性颅内动脉瘤预后的影响因素。方法 选择2021年1月至2023年4月安岳县人民医院和桂林医学院第二附属医院接诊的复杂性颅内动脉瘤患者98例。患者入组后均行PED治疗,收集可能影响复杂性颅内动脉瘤预后的影响因素。据改良Rankin 量表得分将患者分为2组,≤2分为预后良好组,>2分为预后不良组,比较2组的临床资料。建立Nomograms模型并对模型进行验证。结果98例患者中,10例(10.20%)出现预后不良。预后不良组与预后良好组患者年龄、高血压病史、糖尿病史、氯吡格雷抵抗、Fisher分级、动脉瘤多次破裂、动脉瘤位置、瘤体大小、瘤颈、多发及入院时Hunt-Hess分级差异均有统计学意义(P<0.05)。多因素分析结果显示,高血压病史、氯吡格雷抵抗、动脉瘤多次破裂、动脉瘤位置、多发及入院时Hunt-Hess分级为PED治疗复杂性颅内动脉瘤预后的独立性影响因素。Nomograms模型预测PED治疗复杂性颅内动脉瘤预后的AUC为0.849(95%CI:0.758~0.939)。模型组与验证组预测曲线与标准曲线基本拟合。决策曲线分析结果显示,当Nomograms模型预测PED治疗复杂性颅内动脉瘤预后不良的概率阈值为0.10~0.90时,患者的净受益率大于0。结论PED治疗复杂性颅内动脉瘤预后不良的影响因素主要有高血压病史、氯吡格雷抵抗、动脉瘤多次破裂等,Nomograms模型可预测PED治疗复杂性颅内动脉瘤预后不良风险。
参考文献/References:
[1]中国医师协会神经介入专业委员会出血性脑血管病神经介入专业委员会(学组),中国医师协会神经外科医师分会神经介入专业委员会,中国医师协会介入医师分会神经介入专业委员会. 血流导向装置治疗颅内动脉瘤的中国专家共识[J]. 中华神经外科杂志,2020,36:433-445.
[2]刘艳,秦伟,张铃,等. 支气管动脉瘤血管内介入治疗1例并文献复习[J]. 介入放射学杂志,2023,32:941-943.
[3]刘鹏,尤为,刘恋,等. Pipeline血流导向装置治疗复发颅内动脉瘤的临床效果分析[J]. 中华神经外科杂志,2021,37:217-222.
[4]Chancellor B,Raz E,Shapiro M,et al. Flow diversion for intracranial aneurysm treatment:trials involving flow diverters and long-term outcomes[J]. Neurosurgery,2020,86:36-45.
[5]Ito Y,Cho I,Sakai Y,et al. CFD study on the efficacy of flow diverter stent placement for cerebral aneurysms[J]. J Appl Fluid Mech,2021,14:1547-1558.
[6]Fu Y,Fan F,Li J,et al. Willis covered stent in the treatment of a recurrent blood blister-like aneurysm after Pipeline implementation:a case report[J]. J Interv Med,2023,6:96-98.
[7]Saqr KM,Rashad S,Tupin S,et al. What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review[J]. J Cerebr Blood F Met,2020,40 1021-1039.
[8]Gao R,Tian X,Li Q,et al. Artificial blood vessel frameworks from 3d printing-based super-assembly as in vitro models for early diagnosis of intracranial aneurysms[J]. Chem Mater,2020,32:3188-3198.
[9]Baheri IS,Wesolowski M,Revell W,et al. Virtual reality visualization of CFD simulated blood flow in cerebral aneurysms treated with flow diverter stents[J]. Appl Sci,2021,11:8082-8085.
[10]Berod A,Chnafa C,Mendez S,et al. A heterogeneous model of endovascular devices for the treatment of intracranial aneurysms[J]. Int J Numer Meth Bio,2022,38:3552-3556.
[11]Sanches AF,Shit S,Ozpeynirci Y,et al. CFD to quantify idealized intra-aneurysmal blood flow in response to regular and flow diverter stent treatment[J]. Fluids,2022,7:254-258.
[12]Vivas A,Mikhal J,Ong G M,et al. Aneurysm-on-a-chip:setting flow parameters for microfluidic endothelial cultures based on computational fluid dynamics modeling of intracranial aneurysms[J]. Brain Sci,2022,12:603-608.
[13]Mandrycky CJ,Abel AN,Levy S,et al. Endothelial responses to curvature-induced flow patterns in engineered cerebral aneurysms[J]. J Bio Eng,2023,145:11001.
[14]Gyürki D,Csippa B,Paal G,et al. Impact of design and deployment technique on the hydrodynamic resistance of flow diverters[J]. Clin Neuroradiol,2022,32 107-115.
[15]MacDonald DE,Najafi M,Temor L,et al. Spectral bandedness in high-fidelity computational fluid dynamics predicts rupture status in intracranial aneurysms[J]. J Bio Eng,2022,144:61004.
[16]Moriwaki T,Tajikawa T,Nakayama Y. In vitro hydrodynamical study on aneurysmal morphology for treating intracranial aneurysms using particle imaging velocimetry[J]. J Biorheol,2020,34:47-54.
[17]Reorowicz P,Tyfa Z,Obidowski D,et al. Blood flow through the fusiform aneurysm treated with the flow diverter stent-numerical investigations[J]. Biocybern Biomed Eng,2022,42:375-390.
[18]Gomes LC,Mergulhao FJM. A selection of platforms to evaluate surface adhesion and biofilm formation in controlled hydrodynamic conditions[J]. Microorganisms,2021,9:1993.
[19]Pravdivtseva MS,Gaidzik F,Berg P,et al. Influence of spatial resolution and compressed SENSE acceleration factor on flow quantification with 4D flow MRI at 3 tesla[J]. Tomography,2022,8:457-478.
[20]Totorean AF,Totorean IC,Bernad SI,et al. Patient-specific image-based computational fluid dynamics analysis of abdominal aorta and branches[J]. J Pers Med,2022,12:1502-1507.
备注/Memo
- 备注/Memo:
-
(收稿日期:2023-08-27)(本文编辑:新宇)
更新日期/Last Update:
2024-09-15