[1]徐亚琪,陆清声.X线透视下血管腔内介入手术器具自动识别与跟踪研究进展[J].介入放射学杂志,2024,33(07):699-703.
 XU Yaqi,LU Qingsheng..Research progress in the automatic identification and tracking of surgical instruments for endovascular intervention under X-ray fluoroscopy[J].journal interventional radiology,2024,33(07):699-703.
点击复制

X线透视下血管腔内介入手术器具自动识别与跟踪研究进展()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
33
期数:
2024年07
页码:
699-703
栏目:
专论
出版日期:
2024-07-23

文章信息/Info

Title:
Research progress in the automatic identification and tracking of surgical instruments for endovascular intervention under X-ray fluoroscopy
作者:
徐亚琪 陆清声
Author(s):
XU Yaqi LU Qingsheng.
Department of Vascular Surgery, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
关键词:
【关键词】 血管腔内手术 X线透视 识别与跟踪 自动化 手术器具
文献标志码:
A
摘要:
【摘要】 血管腔内介入手术器具自动识别与跟踪有利于血管疾病精准智能微创诊治及手术机器人自动化。随着人工智能(AI)不断发展,识别与跟踪技术的准确率和实时性也在不断提高,更加适应临床需求。本文综述了X线透视下血管腔内介入手术器具自动识别与跟踪研究进展。首先,总结和阐述了介入手术器具自动识别与跟踪相关技术;其次,从完全监督和弱监督两个角度总结了介入手术器具识别与跟踪算法;最后,对介入手术器具识别与跟踪技术应用场景进行了较为全面的总结,包括手术辅助决策、手术智能导航和手术增强现实(AR)技术培训。

参考文献/References:

[1] 王 鉴,高 翔,张 峰,等. 血管介入机器人辅助介入治疗研究现状[J]. 介入放射学杂志, 2023, 32:619- 623.
[2] 何梓君,孔 健. 人工智能在介入放射学中的运用前景及挑战[J]. 介入放射学杂志, 2023, 32:1251- 1255.
[3] Han F, He Y, Zhu H, et al. A novel catheter shape- sensing method based on deep learning with a multi- core optical fiber[J]. Sensors, 2023, 23: 7243.
[4] Mung JC, Huang SG, Moos JM, et al. Stereotactic endovascular aortic navigation with a novel ultrasonic- based three- dimensional localization system[J]. J Vasc Surg, 2013, 57: 1637- 1644.
[5] Zhou JJ, Quadri A, Sewani A, et al. The CathPilot: a novel approach for accurate interventional device steering and tracking[J]. IEEE- ASME Transactions on Mechatronics, 2022, 27: 5812- 5823.
[6] Ragab MG, Abdulkader SJ, MuneerA, et al. A comprehensive systematic review of YOLO for medical object detection(2018 to 2023)[J]. IEEE Access, 2023,11:i- xxv.
[7] Jiang X, Zeng Y, Xiao S, et al. Automatic detection of coronary metallic stent struts based on YOLOv3 and R- FCN[J]. Comput Math Methods Med, 2020, 2020: 1793517.
[8] 丰 蕊,冯 浩,宋 超,等. YOLOX目标检测模型用于自动识别数字减影血管造影图中的血管腔内介入器械[J]. 中国介入影像与治疗学, 2024, 21:100- 104.
[9] Sorriento A,Porfido MB,Mazzoleni S,et al. Optical and electro- magnetic tracking systems for biomedical applications: a critical review on potentialities and limitations[J]. IEEE Rev Biomed Eng, 2020, 13: 212- 232.
[10] Zhou Z,Wu B,Duan J,et al. Optical surgical instrument tracking system based on the principle of stereo vision[J]. J Biomed Opt, 2017, 22: 65005.
[11] van Herwaarden JA, Jansen MM, Vonken EPA, et al. First in human clinical feasibility study of endovascular navigation with fiber optic RealShape(FORS) technology[J]. Eur J Vasc Endovasc Surg, 2021, 61: 317- 325.
[12] Jansen M, Khandige A, Kobeiter H, et al. Three dimensional visualisation of endovascular guidewires and catheters based on laser light instead of fluoroscopy with fiber optic RealShape technology: preclinical results[J]. Eur J Vasc Endovasc Surg, 2020, 60: 135- 143.
[13] Franz AM,Haidegger T,Birkfellner W,et al. Electromagnetic tracking in medicine: a review of technology, validation, and applications[J]. IEEE Trans Med Imaging, 2014, 33: 1702- 1725.
[14] Schwein A, Kramer B, Durai PC, et al. Flexible robotics with electromagnetic tracking improve safety and efficiency during in vitro endovascular navigation[J]. J Vasc Surg, 2016, 63: 285- 286.
[15] Nypan E,Tangen GA,Brekken R, et al. A steerable and electro-magnetically tracked catheter: navigation performance compared with image fusion in a swine model[J]. J Endovasc Ther, 2024, 31: 312- 317.
[16] Jackle S,Garcia- Vazquez V,Eixmann T,et al. Three- dimensional guidance including shape sensing of a stentgraft system for endovascular aneurysm repair[J]. Int J Comput Assist Radiol Surg, 2020, 15: 1033- 1042.
[17] 杨 健,王媛媛,艾丹妮,等. 多模态图像引导手术导航进展[J]. 光学学报, 2023, 43:17- 35.
[18] Abi- Jaoudeh N,Kruecker J,Kadoury S,et al. Multimodality image fusion- guided procedures: technique,accuracy,and applications[J]. Cardiovasc Intervent Radiol, 2012, 35: 986- 998.
[19] Guan S,Li T,Meng C,et al. Multi- mode information fusion navigation system for robot- assisted vascular interventional surgery[J]. BMC Surg, 2023, 23: 51.
[20] Chadebecq F,Vasconcelos F,Mazomenos E,et al. Computer vision in the surgical operating room[J]. Visc Med, 2020, 36: 456- 462.
[21] Moccia S,Romeo L,Migliorelli L,et al. Supervised CNN strategies for optical image segmentation and classification in interventional medicine[M]. Deep learners and deep learner descriptors for medical applications, 2020: 213- 236.
[22] Ullah I, Chikontwe P, Park SH. Real- time tracking of guidewire robot Tips using deep convolutional neural networks on successive localized frames[J]. IEEE Access, 2019, 7: 159743- 159753.
[23] Ravigopal SR, Sarma A, Brumfiel TA, et al. Real- time pose tracking for a continuum guidewire robot under fluoroscopic imaging[J]. IEEE Trans Med Robot Bionics, 2023, 5: 230- 241.
[24] Ghosh R,Wong K,Zhang YJ,et al. Automated catheter segmen-tation and tip detection in cerebral angiography with topology- aware geometric deep learning[J]. J Neurointerv Surg, 2024, 16: 290- 295.
[25] Lee EJ,Plishker W,Liu X,et al. Weakly supervised segmentation for real- time surgical tool tracking[J]. Healthc Technol Lett, 2019, 6: 231- 236.
[26] Roth HR,Yang D,Xu Z,et al. Going to extremes: weakly supervised medical image segmentation[J]. Mach Learn Knowl Extr, 2021, 3: 507- 524.
[27] Zhang D,Han J,Cheng G,et al. Weakly supervised object locali- zation and detection: a survey[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44: 5866- 5885.
[28] Yang H, Shan C, Kolen AF, et al. Weakly- supervised learning for catheter segmentation in 3D frustum ultrasound[J]. Comput Med Imaging Graph, 2022, 96: 102037.
[29] Meng C, Li Y, Xu Y, et al. A weakly supervised framework for 2D/3D vascular registration oriented to incomplete 2D blood vessels[J]. IEEE Trans Med Robot Bionics, 2022, 4: 381- 390.
[30] 关沛峰,温诗涵,杨荣骞.血管介入手术机器人的研究进展及前景分析[J]. 中国医疗器械杂志, 2023, 47:638- 644.
[31] Shi P, Zhao Z, Hu S, et al. Real- time surgical tool detection in minimally invasive surgery based on attention- guided convo- lutional neural network[J]. IEEE Access, 2020, 8: 228853- 228862.
[32] Qiu J,Ming J,Qian C,et al. Guidewire simulation of endovascular intervention: a systematic review[J]. Int J Med Robot, 2022, 18: e2444.
[33] Chan HHL,Haerle SK,Daly MJ,et al. An integrated augmented reality surgical navigation platform using multi- modality imaging for guidance[J]. PLoS One, 2021, 16: e0250558.
[34] Edstrom E,Burstrom G,Omar A,et al. Augmented reality surgical navigation in spine surgery to minimize staff radiation exposure[J]. Spine, 2020, 45: E45- E53.
[35] 徐文博,于 洋,王 超. 介入治疗与教学的元宇宙:前生,今世与未来[J]. 中国医学教育术, 2023, 37:397- 401.
[36] 刘书中,吴昀效,刘 勇,等. 混合现实技术在脊柱微创手术术前规划及教学培训中的应用现状及前景[J]. 中国骨与关节杂志, 2022, 11:461- 464.
[37] Al- Ebrahim EK. Madani T A, Al- ebrahim KE. Future of cardiac surgery,introducing the interventional surgeon[J]. J Card Surg, 2022, 37: 88- 92.
[38] Walters D,Omran J,Patel M,et al. Robotic- assisted percutaneous coronary intervention: concept, data, and clinical application[J]. Interv Cardiol Clin, 2019, 8: 149- 159.
[39] Najafi G,Kreiser K,Abdelaziz MEMK,et al. Current state of robotics in interventional radiology[J]. Cardiovasc Intervent Radiol, 2023, 46: 549- 561.
[40] Durand E,Sabatier R,Smits PC,et al. Evaluation of the R- one robotic system for percutaneous coronary intervention: the R- EVOLUTION study[J]. EuroIntervention, 2023, 18: e1339- e1347.
[41] 王坤东,陆清声,陈 冰,等. 血管介入手术机器人的临床设计及技术实现[J]. 机器人外科学杂志(中英文), 2020, 1:243- 249.
[42] 吴志远,程永德.数字介入——当介入放射学遇上数字医学[J]. 介入放射学杂志, 2024, 33:1- 6.

相似文献/References:

[1]王建雄,刘 维,窦晓霞,等. X线透视联合超声引导行经皮肝穿胆道引流术治疗梗阻性黄疸的临床应用[J].介入放射学杂志,2012,(04):309.
 ,,et al.Percutaneous transhepatic biliary drainage under fluoroscopic and ultrasound guidance for the treatment of obstructive jaundice: its clinical application [J].journal interventional radiology,2012,(07):309.

备注/Memo

备注/Memo:
(收稿日期:2024- 03- 27)
(本文编辑:谷 珂)
更新日期/Last Update: 2024-07-23