参考文献/References:
[1] Alaiev D, Krouss M, Israilov S, et al. Nudging to select single-lumen over multiple-lumen peripherally inserted central catheters (PICCs) in a large safety net system[J]. Infect Control Hosp Epidemiol, 2023, 44: 1381-1385.
[2] Wu JT, Wong KCL, Gur Y, et al. Comparison of chest radiograph interpretations by artificial intelligence algorithm vs radiology residents[J]. JAMA Netw Open, 2020, 3: e2022779.
[3] Lin YM, Paolucci I, O’Connor CS, et al. Ablative margins of colorectal liver metastases using deformable CT image registration and autosegmentation[J]. Radiology, 2023, 307: e221373.
[4] 张天奇,王穆荣,江艺泉,等. 肝肿瘤消融穿刺路径规划数字化研究进展[J]. 介入放射学杂志, 2023, 32:400-403.
[5] Lachenmayer A, Tinguely P, Maurer MH, et al. Stereotactic image-guided microwave ablation of hepatocellular carcinoma using a computer-assisted navigation system[J]. Liver Int, 2019, 39: 1975-1985.
[6] 李 海,葛乃建,何成建,等. IQQA-3D精准评估在肝门胆管癌经皮穿肝胆管引流术及经皮胆道支架植入术治疗中的应用[J]. 介入放射学杂志, 2022, 31:875-878.
[7] Kim JH, Kim HS, Yoon JH, et al. Anatomical ablation for small hepatocellular carcinomas using multiple applicators: a preliminary study[J]. Cancer Imaging, 2023, 23: 78.
[8] 邱金霞,尹永波,鲁 北,等. 实时影像融合介入导航系统在小肝癌微波消融中应用评价[J]. 介入放射学杂志, 2023, 32:663-667.
[9] Guan S, Li T, Meng C, et al. Multi-mode information fusion navigation system for robot-assisted vascular interventional surgery[J]. BMC Surg, 2023, 23: 51.
[10] 安 涛,阮 娜,罗翰林,等. MRI融合导航经颈静脉肝内门体分流术的临床优势和经验[J]. 介入放射学杂志, 2023, 32:119-122.
[11] 钟 华,滕家俊,李文涛. CT电磁导航系统引导下经皮穿刺诊断周围型肺癌的操作规范专家共识(2021版)[J]. 介入放射学杂志,2022, 31:221-225.
[12] Scharll Y, Letrari S, Laimer G, et al. Puncture accuracy of an optical tracked robotic aiming device: a phantom study[J]. Eur Radiol, 2022, 32: 6769-6776.
[13] Zhang Y, Huang H, Cao S, et al. Clinical value of an electro-magnetic navigation system for CT-guided percutaneous lung biopsy of peripheral lung lesions[J]. J Thorac Dis, 2021, 13: 4885-4893.
[14] Zhang Z, Shao G, Zheng J, et al. Electromagnetic navigation to assist with computed tomography-guided thermal ablation of liver tumors[J]. Minim Invasive Ther Allied Technol, 2020, 29: 275-282.
[15] Song C, Xia S, Zhang L, et al. A novel endovascular robotic-assisted system for endovascular aortic repair: first-in-human evaluation of practicability and safety[J]. Eur Radiol, 2023, 33(11):7408-7418.
[16] 王 鉴,高 翔,张 峰,等. 血管介入机器人辅助介入治疗研究现状[J]. 介入放射学杂志, 2023, 32:619-623.
[17] Nam JG, Kang HR, Lee SM, et al. Deep learning prediction of survival in patients with chronic obstructive pulmonary disease using chest radiographs[J]. Radiology, 2022, 305: 199-208.
[18] Zhu H, Hu M, Ma Y, et al. Multi-center evaluation of machine learning-based radiomic model in predicting disease free survival and adjuvant chemotherapy benefit in stage Ⅱ colorectal cancer patients[J]. Cancer Imaging, 2023, 23: 74.
[19] Luo X, Wang J, Liang X, et al. Prediction of cerebral aneurysm rupture using a point cloud neural network[J]. J Neurointerv Surg, 2023, 15: 380-386.
[20] Wang Z, Han H, Wang L, et al. Automated radiographic report generation purely on transformer: a multicriteria supervised approach[J]. IEEE Trans Med Imaging, 2022, 41: 2803-2813.
[21] Müller L, Kloeckner R, Mahringer-Kunz A, et al. Fully automated AI-based splenic segmentation for predicting survival and estimating the risk of hepatic decompensation in TACE patients with HCC[J]. Eur Radiol, 2022, 32: 6302-6313.
[22] Abajian A, Murali N, Savic LJ, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning:an artificial intelligence concept[J]. J Vasc Interv Radiol, 2018, 29: 850-857.e1.
[23] Zhang L, Jiang Y, Jin Z, et al. Real-time automatic prediction of treatment response to transcatheter arterial chemoembolization in patients with hepatocellular carcinoma using deep learning based on digital subtraction angiography videos[J]. Cancer Imaging, 2022, 22: 23.
[24] Kong C, Zhao Z, Chen W, et al. Prediction of tumor response via a pretreatment MRI radiomics-based nomogram in HCC treated with TACE[J]. Eur Radiol, 2021, 31: 7500-7511.
[25] Peng J, Zhang J, Zhang Q, et al. A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma[J]. Diagn Interv Radiol, 2018, 24: 121-127.
[26] Zheng BH, Liu LZ, Zhang ZZ, et al. Radiomics score: a potential prognostic imaging feature for postoperative survival of solitary HCC patients[J]. BMC Cancer, 2018, 18: 1148.
[27] Zhou G, Liu W, Zhang Y, et al. Application of three-dimensional printing in interventional medicine[J]. J Interv Med, 2020, 3: 1-16.
[28] Huang W, Lu J, Chen KM, et al. Preliminary application of 3D-printed coplanar template for iodine-125 seed implantation therapy in patients with advanced pancreatic cancer[J]. World J Gastroenterol, 2018, 24: 5280-5287.
[29] 李建东,伍雪晴,崔艳峰,等. 利用3D打印技术体外模拟微导管塑形在颅内动脉瘤介入治疗中的应用[J]. 介入放射学杂志, 2023, 32:527-532.
[30] Huang W, Shan Q, Wu Z, et al. Retrievable covered metallic segmented Y airway stent for gastrorespiratory fistula of carina or main bronchi[J]. J Thorac Cardiovasc Surg, 2021, 161: 1664-1671.
[31] 范敬凡,张紫馨,肖德强,等. 5G远程操控与混合现实引导的肝肿瘤微波消融手术导航[J]. 中国数字医学, 2022, 17:15-19.
[32] Uppot RN, Laguna B, McCarthy CJ, et al. Implementing virtual and augmented reality tools for radiology education and training, communication, and clinical care[J]. Radiology, 2019, 291: 570-580.
[33] 穆 琳,裴 昀,李 叶,等. 虚拟现实和增强现实技术在《医学影像学》教学中的研究与应用进展[J]. 中华医学教育探索杂志, 2021, 20:947-950.
[34] 洪 伟,梁 斌. Angio-CT在介入放射学中的应用进展[J]. 中华放射学杂志, 2023, 57:212-215.
[35] Tagliafico AS, Campi C, Bianca B, et al. Blockchain in radiology research and clinical practice: current trends and future directions[J]. Radiol Med, 2022, 127: 391-397.
[36] Karim MR, Islam T, Shajalal M, et al. Explainable AI for bioinformatics: methods, tools and applications[J]. Brief Bioinform, 2023, 24: bbad236.
[37] Yanagawa M, Ito R, Nozaki T, et al. New trend in artificial intelligence-based assistive technology for thoracic imaging[J]. Radiol Med, 2023, 128: 1236-1249.
相似文献/References:
[1]李安琪,尹化斌,岳巍,等.老年食管癌的金属支架姑息性治疗[J].介入放射学杂志,2000,(03):167.
[2]曾群,王军女.部分脾动脉栓塞治疗脾功能亢进的护理[J].介入放射学杂志,2000,(03):188.
[3]张根山,周胜利,张旭.原发性肝癌合并脾功能亢进的介入治疗[J].介入放射学杂志,2000,(03):183.
[4]吴恩惠.评《数字减影血管造影诊断学》[J].介入放射学杂志,2000,(04):209.
[5]高斌,王伟昱.套管式活检枪与抽吸式穿刺针在CT导引下穿刺的对比研究[J].介入放射学杂志,2000,(04):228.
[6]李麟荪.积极开展非血管性介入放射学[J].介入放射学杂志,2000,(04):193.
[7]啜振华,刘荣欣,苑静波,等.输卵管妊娠的介入治疗[J].介入放射学杂志,1997,(02):82.
[8]吕福华,颜志平,王建华,等.肝总动脉单面活瓣闭塞[J].介入放射学杂志,1997,(03):179.
[9]程永德.介入放射学呼唤规范化管理[J].介入放射学杂志,1997,(03):127.
[10]王执民,吴智群.中晚期原发性肝癌DSA表现的分型及其临床意义[J].介入放射学杂志,1997,(03):133.