[1]李建伟,纪盛章,宋金玉.流固耦合分析脉压差对颈内动脉狭窄处壁面剪切力的影响[J].介入放射学杂志,2023,32(11):1131-1134.
 LI Jianwei,JI Shengzhang,SONG Jinyu..Fluid structure interaction analysis of the effect of pulse pressure difference on the wall shear stress at the stenosis of internal carotid artery[J].journal interventional radiology,2023,32(11):1131-1134.
点击复制

流固耦合分析脉压差对颈内动脉狭窄处壁面剪切力的影响()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
32
期数:
2023年11
页码:
1131-1134
栏目:
临床研究
出版日期:
2023-11-30

文章信息/Info

Title:
Fluid structure interaction analysis of the effect of pulse pressure difference on the wall shear stress at the stenosis of internal carotid artery
作者:
李建伟 纪盛章 宋金玉
Author(s):
LI Jianwei JI Shengzhang SONG Jinyu.
Tianjin Fourth Central Hospital, Tianjin 300140, China
关键词:
【关键词】 脉压差 壁面剪切力 颈内动脉狭窄 流固耦合
文献标志码:
A
摘要:
【摘要】 目的 基于流固耦合(fluid structure interaction,FSI)的方式,分析不同脉压差对颈内动脉狭窄处壁面剪切力(wall shear stress,WSS)的影响。方法 建模为颈内动脉轻度狭窄的CT血管造影(computed tomography angiography,CTA)图像,将模型导入FSI分析软件中。入口条件设定为A、B两组,A组8种入口条件:舒张压设定为80 mmHg,收缩压间隔10 mmHg由90~160 mmHg递增;B组8种入口条件:收缩压设定为120 mmHg,舒张压间隔10 mmHg由110~40 mmHg递减。获取两组数据后,分别测量颈内动脉狭窄处截面收缩期和舒张期的WSS数值和差值。结果 两组WSS差值随着脉压差增大而增大,当压差为80 mmHg时,A组WSS差为92.821 Pa,B组WSS差为98.203 Pa,远高于正常压差(40 mmHg)的WSS差值52.041 Pa;B组脉压差越小,一个心动周期内的整体WSS越高,B组脉压差为10 mmHg时,收缩期和舒张期的WSS分别为220.384 Pa 和204.744 Pa。结论 颈内动脉狭窄处的脉压差增高,WSS的振荡幅度也会增大,易造成斑块破裂;当脉压差低且收缩压和舒张压同时偏高时,WSS整体也偏高,同样是斑块的易损因素,通过FSI分析脉压差对颈内动脉狭窄处的WSS数值,有助于临床预防和治疗。

参考文献/References:

[1] Jae SY, Kurl S, Kunutsor SK, et al. Association between pulse pressure and the risk of sudden cardiac death in middle- aged men: a 26- year follow- up population- based study[J]. Mayo Clin Proc, 2020, 95:2044- 2046.
[2] Bang OY, Kim BM, Seo WK, et al. Endovascular therapy for acute ischemic stroke of intracranial atherosclerotic origin- neuroimaging perspectives[J]. Front Neurol, 2019, 10: 269.
[3] Hartman EMJ,de Nisco G, Kok AM, et al. Lipid- rich plaques detected by near- infrared spectroscopy are more frequently exposed to high shear stress[J]. J Cardiovasc Transl Res, 2021, 14: 416- 425.
[4] 刘文智,刘 莹,罗院明. 斑块偏心分布影响下多组分两相血流动力学数值模拟[J]. 介入放射学杂志, 2019, 28:969- 973.
[5] Jozwik K, Obidowski D. Numerical simulations of the blood flow through vertebral arteries[J]. J Biomech, 2010, 43: 177- 185.
[6] Reid L. An introduction to biomedical computational fluid dynamics[J]. Adv Exp Med Biol, 2021,1334: 205- 222.
[7] Chandran KB, Rittgers SE, Yoganathan AP.生物流体力学- 人体循环系统[M]. 北京:机械工业出版社, 2014.
[8] Valencia A, Baeza F. Numerical simulation of fluid- structure interaction in stenotic arteries considering two layer nonlinear anisotropic structural model[J]. Int Commun Heat Mass, 2009,36:137- 142.
[9] Tan FP, Borghi A, Mohiaddin RH, et al. Analysis of flow patterns in a patient- specific thoracic aortic aneurysm model[J]. Comput Struct, 2009, 87: 680- 690.
[10] Ohayon J, Gharib AM, Garcia A, et al. Is arterial wall- strain stiffening an additional process responsible for atherosclerosis in coronary bifurcations?: an in vivo study based on dynamic CT and MRI[J]. Am J Physiol Heart Circ Physiol, 2011, 301: H1097- H1106.
[11] Ikoma T, Suwa K, Sano M, et al. Early changes of pulmonary arterial hemodynamics in patients with systemic sclerosis: flow pattern, WSS, and OSI analysis with 4D flow MRI[J]. Eur Radiol, 2021, 31: 4253- 4263.
[12] Paritala PK, Yarlagadda T, Mendieta JB, et al. Plaque longitudinal heterogeneity in morphology, property, and mechanobiology[J]. Cerebrovasc Dis, 2021, 50: 510- 519.
[13] Chen Z, Li M, Li M, et al. Expansive arterial remodeling of carotid arteries in symptomatic ischemic patients[J]. J Interv Med, 2019, 2: 82- 85.
[14] Ngo MT, Lee UY, Ha H, et al. Comparison of hemodynamic visualization in cerebral arteries: can magnetic resonance imaging replace computational fluid dynamics?[J]. J Pers Med, 2021, 11: 253.
[15] Doddasomayajula R, Chung BJ, Mut F, et al. Hemodynamic characteristics of ruptured and unruptured multiple aneurysms at Mirror and ipsilateral locations[J]. AJNR Am J Neuroradiol, 2017, 38: 2301- 2307.
[16] Eshtehardi P, Brown AJ, Bhargava A, et al. High wall shear stress and high- risk plaque: an emerging concept[J]. Int J Cardiovasc Imaging, 2017, 33: 1089- 1099.
[17] Thim T, Hagensen MK, Horlyck A, et al. Wall shear stress and local plaque development in stenosed carotid arteries of hyper- cholesterolemic minipigs[J]. J Cardiovasc Dis Res, 2012, 3: 76- 83.
[18] Tuenter A, Selwaness M, Arias Lorza A, et al. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques[J]. Atherosclerosis, 2016, 251: 348- 354.

相似文献/References:

[1]周治军,王 哲,赵珅宇,等.基于计算流体力学的腹主动脉瘤破裂风险研究 [J].介入放射学杂志,2020,29(08):763.
 ZHOU Zhijun,WANG Zhe,ZHAO Shenyu,et al.Study on the rupture risks of abdominal aortic aneurysm based on computational fluid dynamics[J].journal interventional radiology,2020,29(11):763.

备注/Memo

备注/Memo:
(收稿日期:2022- 10- 10)
(本文编辑:新 宇)
更新日期/Last Update: 2023-11-30