[1]武玙璠,汤超杰,王 武.生物可吸收血管内支架的现状[J].介入放射学杂志,2023,32(10):1040-1049.
 WU Yufan,TANG Chaojie,WANG Wu..The current clinical application status of bioresorbable endovascular stents[J].journal interventional radiology,2023,32(10):1040-1049.
点击复制

生物可吸收血管内支架的现状()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
32
期数:
2023年10
页码:
1040-1049
栏目:
综述
出版日期:
2023-10-31

文章信息/Info

Title:
The current clinical application status of bioresorbable endovascular stents
作者:
武玙璠 汤超杰 王 武
Author(s):
WU Yufan TANG Chaojie WANG Wu.
Department of Diagnostic and Interventional Radiology, Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University, Shanghai 200233, China
关键词:
【关键词】 生物可吸收支架 血管内支架 血管介入治疗
文献标志码:
A
摘要:
【摘要】 心脑血管疾病是全球常见的死亡原因,经皮冠状动脉介入术是目前最有效手术方式之一,血管内支架作为其重要治疗手段,其临床疗效决定着患者远期预后。新一代生物可吸收支架在很大程度上解决了先前金属支架存在的血管急性闭塞与再狭窄等临床不良事件,有望成为未来血管支架主力军,但无论是可吸收金属支架,包括铁基、镁基和锌基亦或是可吸收聚合物支架,都或多或少存在降解速率、支架机械性能等方面的局限性,所以尚未能完全克服远期血栓事件等不良预后的发生。本文总结20年来已出现的各种生物可吸收血管内支架,同时从支架原理、特性、优缺点等角度出发对理想的生物可吸收支架进行展望,为更新一代血管内支架的开发提供客观有效数据及参考建议。

参考文献/References:

[1] Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon- expandable- stent implantation with balloon angioplasty in patients with coronary artery disease[J]. N Engl J Med, 1994, 331: 489- 495.
[2] Pfisterer M,Brunner-La Rocca HP, Buser PT, et al.Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug- eluting versus bare-metal stents[J]. J Am Coll Cardiol, 2006, 48: 2584-2591.
[3] Finn AV,Nakazawa G,Joner M,et al. Vascular responses to drug eluting stents:importance of delayed healing[J]. Arterioscler Thromb Vasc Biol, 2007, 27: 1500-1510.
[4] Sousa JE,Costa MA,Abizaid A,et al. Lack of neointimal proliferation after implantation of sirolimus- coated stents in human coronary arteries[J]. Circulation, 2001, 103: 192-195.
[5] Hu T, Yang C, Lin S, et al. Biodegradable stents for coronary artery disease treatment:recent advances and future perspectives[J]. Mater Sci Eng C Mater Biol Appl, 2018, 91: 163-178.
[6] 吴轶喆,葛均波.从 ABSORB 系列研究看生物可吸收支架现状和未来之路[J].老年医学与保健,2018,24:97-100.
[7] Ormiston JA, Serruys PW, Regar E, et al. A bioabsorbable everolimus- eluting coronary stent system for patients with single de-novo coronary artery lesions(ABSORB): a prospective open-label trial[J]. Lancet, 2008, 371: 899-907.
[8] Onuma Y, Serruys PW. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization[J]. Circulation, 2011, 123: 779-797.
[9] Onuma Y, Serruys PW, Perkins LE, et al. Intracoronary optical coherence tomography and histology at 1 month and 2,3,and 4 years after implantation of everolimus- eluting bioresorbable vascular scaffolds in a porcine coronary artery model: an attempt to decipher the human optical coherence tomography images in the ABSORB trial[J]. Circulation, 2010, 122: 2288-2300.
[10] Abizaid A,Costa RA,Schofer J,et al. Serial multimodality imaging and 2- year clinical outcomes of the novel DESolve novolimus- eluting bioresorbable coronary scaffold system for the treatment of single de novo coronary lesions[J]. JACC Cardiovasc Interv, 2016, 9: 565-574.
[11] Jinnouchi H,Torii S,Sakamoto A,et al. Fully bioresorbable vascular scaffolds: lessons learned and future directions[J]. Nat Rev Cardiol, 2019, 16: 286-304.
[12] Im SH,Im DH,Park SJ,et al. Current status and future direction of metallic and polymeric materials for advanced vascular stents[J]. Prog Mater Sci, 2022, 126: 100922.
[13] Gasior P,Cheng Y,Xia J,et al. Two- year longitudinal evaluation of a second- generation thin- strut sirolimus- eluting bioresorbable coronary scaffold with hybrid cell design in porcine coronary arteries[J]. Cardiol J, 2020, 27: 115-125.
[14] Seth A, Onuma Y, Chandra P, et al. Three-year clinical and two- year multimodality imaging outcomes of a thin- strut sirolimus-eluting bioresorbable vascular scaffold: MeRes-1 trial[J]. Euro-Intervention, 2019, 15: 607-614.
[15] Abizaid A,Kedev S,Ali RBM, et al. Imaging and 2-year clinical outcomes of thin strut sirolimus- eluting bioresorbable vascular scaffold: the MeRes-1 extend trial[J]. Catheter Cardiovasc Interv, 2021, 98: 1102-1110.
[16] Costa RA, Liew HB, Abizaid A,et al. TCT-546 6- month angiographic results of the novel MIRAGE microfiber sirolimus-eluting bioresorbable vascular scaffold:a quantitative coronary angiography analysis from the prospective,randomized MIRAGE clinical trial[J].J Am Coll Cardiol,2015,66:B223.
[17] Cheng Y,Gasior P,Shibuya M,et al. Comparative characterization of biomechanical behavior and healing profile of a novel ultra-high-molecular-weight amorphous poly-L-lactic acid sirolimus-eluting bioresorbable coronary scaffold[J]. Circ Cardiovasc Interv, 2016, 9: e004253.
[18] Regazzoli D, Leone PP, Colombo A, et al. New generation bioresorbable scaffold technologies: an update on novel devices and clinical results[J]. J Thorac Dis, 2017, 9:S979-S985.
[19] Chieffo A,Khawaja SA,Latib A, et al. First-in-human evaluation of a novel sirolimus- eluting ultra- high molecular weight APTITUDE bioresorbable scaffold: 9- and 24- month imaging and clinical results of the RENASCENT Ⅱ trial[J]. EuroIntervention, 2020, 16: e133-e140.
[20] Song L, Xu B, Chen Y, et al. Thinner strut sirolimus-eluting BRS versus EES in patients with coronary artery disease: FUTURE-Ⅱ trial[J]. JACC Cardiovasc Interv, 2021, 14: 1450-1462.
[21] Han Y, Xu B, Fu G, et al. A randomized trial comparing the NeoVas sirolimus- eluting bioresorbable scaffold and metallic everolimus- eluting stents[J]. JACC Cardiovasc Interv, 2018, 11: 260-272.
[22] Wu Y,Yin J,Chen J,et al. Final report of the 5-year clinical outcomes of the XINSORB bioresorbable sirolimus- eluting scaffold in the treatment of single de novo coronary lesions in a first-in-human study[J]. Ann Transl Med, 2020, 8: 1162.
[23] Kereiakes DJ, Ellis SG, Popma JJ, et al. Evaluation of a fully bioresorbable vascular scaffold in patients with coronary artery disease: design of and rationale for the ABSORB Ⅲ randomized trial[J]. Am Heart J, 2015, 170: 641- 651.
[24] Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus- eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis(ABSORBⅡ): a 3 year,randomized,controlled,single-blind,multicentre clinical trial[J]. Lancet, 2016, 388: 2479-2491.
[25] Ali ZA, Serruys PW, Kimura T, et al. 2-year outcomes with the Absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta- analysis of seven randomised trials with an individual patient data substudy[J]. Lancet, 2017, 390: 760-772.
[26] Stone GW, Ellis SG, Gori T, et al. Blinded outcomes and angina assessment of coronary bioresorbable scaffolds: 30- day and 1-year results from the ABSORB Ⅳ randomised trial[J]. Lancet, 2018, 392: 1530-1540.
[27] Nef HM, Wiebe J, Foin N, et al. A new novolimus- eluting bioresorbable coronary scaffold: present status and future clinical perspectives[J]. Int J Cardiol, 2017, 227: 127-133.
[28] Su Y,Fu J,Lee W,et al. Improved mechanical,degradation,and biological performances of Zn-Fe alloys as bioresorbable implants[J]. Bioact Mater, 2022, 17: 334-343.
[29] Peuster M, Wohlsein P, Brügmann M, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits[J]. Heart, 2001, 86: 563-569.
[30] Zheng JF, Xi ZW, Li Y, et al. Long-term safety and absorption assessment of a novel bioresorbable nitrided Iron scaffold in porcine coronary artery[J]. Bioact Mater, 2022, 17: 496-505.
[31] Sun G,Guo W,Zhang H,et al. A novel iron- bioresorbable sirolimus- eluting scaffold device for infrapopliteal artery disease[J]. JACC Cardiovasc Interv, 2022, 15: e57- e59.
[32] Cockerill I,See CW,Young ML,et al. Designing better cardiova-scular stent materials: a learning curve[J]. Adv Funct Mater, 2021, 31: 2005361.
[33] Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective,non- randomised multicentre trial[J]. Lancet, 2007, 369: 1869-1875.
[34] Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions(BIOSOLVE-Ⅱ): 6 month results of a prospective,multicenter,non-randomised,first-in-man trial[J]. Lancet, 2016, 387: 31-39.
[35] Haude M,Ince H,Toelg R,et al. Safety and performance of the second- generation drug- eluting absorbable metal scaffold(DREAMS 2G)in patients with de novo coronary lesions: three-year clinical results and angiographic findings of the BIOSOLVE-Ⅱ first- in- man trial[J]. EuroIntervention, 2020, 15: e1375-e1382.
[36] Haude M, Ince H, Abizaid A, et al. Sustained safety and performance of the second- generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12- month clinical results and angiographic findings of the BIOSOLVE-Ⅱ first-in-man trial[J]. Eur Heart J, 2016, 37: 2701-2709.
[37] Raber L,Ueki Y.Bioresorbable scaffolds: unfilled prophecies[J].Circulation, 2019,140:1917-1920.
[38] Zhang J, Li H, Wang W, et al. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: a 20-month study[J]. Acta Biomater, 2018, 69: 372-384.
[39] 王 武,程英升,李永东. 可降解镁合金覆膜支架治疗兔颈总动脉侧壁型动脉瘤可行性研究[J]. 介入放射学杂志, 2016, 25:151-154.
[40] Liu J, Zheng B, Wang P, et al. Enhanced in vitro and in vivo performance of Mg- Zn- Y- Nd alloy achieved with APTES pretreatment for drug- eluting vascular stent application[J]. ACS Appl Mater Interfaces, 2016, 8: 17842-17858.
[41] Bowen PK, Shearier ER, Zhao S, et al. Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-Alloys[J]. Adv Healthc Mater, 2016, 5: 1121-1140.
[42] Yang H, Wang C, Liu C, et al. Evolution of the degradation mechanism of pure Zinc stent in the one- year study of rabbit abdominal aorta model[J]. Biomaterials, 2017, 145: 92-105.
[43] Chaabane C, Otsuka F, Virmani R, et al. Biological responses in stented arteries[J]. Cardiovasc Res, 2013, 99: 353-363.
[44] 中华医学会放射学分会MR学组. 颅内MR血管壁成像技术与应用中国专家共识[J]. 中华放射学杂志, 2019, 53:15.
[45] Wang R, Lu J, Yin J, et al. A TEMPOL and rapamycin loaded nanofiber- covered stent favors endothelialization and mitigates neointimal hyperplasia and local inflammation[J]. Bioact Mater, 2022, 19: 666-677.
[46] Yang F,Ma Q,Matsabisa MG,et al. Panax notoginseng for cerebral ischemia: a systematic review[J]. Am J Chin Med, 2020, 48: 1331-1351.
[47] Iqbal J, Onuma Y, Ormiston J, et al. Bioresorbable scaffolds: rationale,current status,challenges,and future[J]. Eur Heart J, 2014, 35: 765-776.
[48] Lee SJ,Jo HH, Lim KS,et al.Heparin coating on 3D printed poly (L- lactic acid) biodegradable cardiovascular stent via mild surface modification approach for coronary artery implantation [J]. Chem Eng J,2019,378,122116.
[49] Shen Y,Tang C,Sun B,et al. 3D printed personalized,hepa-rinized and biodegradable coronary artery stents for rabbit abdominal aorta implantation[J]. Chem Eng J, 2022,450: 138202.


相似文献/References:

[1]郭丰林,汪世存.Budd-Chiari综合征的介入治疗(附11例报告)[J].介入放射学杂志,1997,(01):42.
[2]陈光利,贺能树.颈动脉狭窄的PTA和PTAS[J].介入放射学杂志,1998,(01):54.
[3]陈光利,孙建中,贺能树,等.大动脉炎颈动脉狭窄球囊扩张和内支架的治疗[J].介入放射学杂志,1998,(03):131.
[4].Dietre Erich Apitzsch MD(阿皮施博士)简介[J].介入放射学杂志,1998,(04):252.
[5]段孝敏.德国新产品-血管内支架置放术研讨会在沪召开[J].介入放射学杂志,1994,(02):64.
[6]杨建勇,刘子江.肾动脉血管内支架[J].介入放射学杂志,1995,(04):235.
[7]祖茂衡,徐浩,顾玉明,等.Budd-Chiari综合征的影象诊断与介入治疗(附168例分析)[J].介入放射学杂志,1996,(02):73.
[8]杨仁杰,尹化斌,刘赓年,等.肾动脉内支架置入术治疗肾性高血压[J].介入放射学杂志,1996,(03):126.
[9]赵世华,戴汝平,蒋世良,等.小剂量溶栓结合PTA和支架治疗外周动脉慢性阻塞性病变[J].介入放射学杂志,1996,(04):192.
[10].全国TIPSS及管腔内支架临床应用新进展学术研讨会通知[J].介入放射学杂志,1996,(04):213.

备注/Memo

备注/Memo:
(收稿日期:2022-08-29)
(本文编辑:茹 实)
更新日期/Last Update: 2023-10-31