[1]罗保发,杨铠文,黄益龙,等.X线透视引导穿刺大鼠腰椎间盘建立椎间盘源性腰痛模型的实验研究[J].介入放射学杂志,2022,31(09):883-888.
 LUO Baofa,YANG Kaiwen,HUANG Yilong,et al.Establishment of discogenic low back pain model in rats by fluoroscopy-guided puncture of lumbar intervertebral disc: an experimental study[J].journal interventional radiology,2022,31(09):883-888.
点击复制

X线透视引导穿刺大鼠腰椎间盘建立椎间盘源性腰痛模型的实验研究()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
31
期数:
2022年09
页码:
883-888
栏目:
实验研究
出版日期:
2022-10-13

文章信息/Info

Title:
Establishment of discogenic low back pain model in rats by fluoroscopy-guided puncture of lumbar intervertebral disc: an experimental study
作者:
罗保发 杨铠文 黄益龙 朱红丽 高 超 杞天付 马寄耀 何 波
Author(s):
LUO Baofa YANG Kaiwen HUANG Yilong ZHU Hongli GAO Chao QI Tianfu MA Jiyao HE Bo.
Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
关键词:
【关键词】 动物模型 椎间盘源性腰痛 X线透视引导 行为学
文献标志码:
A
摘要:
【摘要】 目的 探讨X线透视引导下穿刺大鼠腰椎间盘建立椎间盘源性腰痛(DLBP)动物模型的可行性。方法 将60只Sprague-Dawley大鼠随机分为DLBP组(X线透视引导下穿刺L4~5和L5~6,n=24)、假手术组(穿刺同层面椎旁肌,n=15)、正常组(不做任何处理,n=21);根据建模时间,再将每组大鼠平均分为30 d组、90 d组、180 d组。分别在建模后1、7、14、30、90、180 d进行行为学实验,评估大鼠步态功能、痛温觉阈值、轴性腰痛的改变;建模后30、90、180 d进行腰椎MR矢状位T2加权成像扫描,扫描完成后处死大鼠截取L4~5和L5~6椎间盘,行苏木精-伊红(HE)染色和番红O-固绿染色观察椎间盘退变程度。结果 DLBP组建模后大鼠步态障碍评分呈先增高后恢复再增高改变,至90、180 d与正常组和假手术组相比大鼠行为学表现为痛温觉阈值显著减低(均P<0.01)、轴性腰痛诱发的弯腰时间增加及挣扎时间减少(均P<0.05)。腰椎MR矢状位T2加权成像显示,建模后30、90、180 d正常组和假手术组大鼠腰椎间盘T2信号均无降低,而 DLBP组腰椎间盘T2信号均降低,Pfirrmann分级以Ⅲ~Ⅳ级为主,呈中-重度退变。组织学结果显示,DLBP组大鼠椎间盘退变Masuda评分显著高于正常组和假手术组(均P<0.05)。结论 X线透视引导下腰椎间盘穿刺技术便捷、高效、微创,成功建立了DLBP大鼠模型。

参考文献/References:

[1] Cieza A, Causey K, Kamenov K, et al. Global estimates of the need for rehabilitation based on the Global Burden of Disease Study 2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2021, 396: 2006- 2017.
[2] 李若禹,丁文元. 磁共振影像标志物对椎间盘退变及盘源性下腰痛诊断的研究进展[J]. 中华骨科杂志, 2020, 40:880- 888.
[3] Lyu FJ, Cui H, Pan H, et al. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions[J]. Bone Res, 2021, 9: 7.
[4] Hodges PW, Danneels L. Changes in structure and function of the back muscles in low back pain: different time points, observations, and mechanisms[J]. J Orthop Sports Phys Ther, 2019, 49: 464- 476.
[5] Ozturk PE, Aylanc N. Which is the most affected muscle in lumbar back pain- multifidus or erector spinae?[J]. Pol J Radiol, 2020, 85: e278- e286.
[6] Yang G, Chen L, Gao Z, et al. Implication of microglia activation and CSF- 1/CSF- 1Rpathway in lumbar disc degeneration- related back pain[J]. Mol Pain, 2018, 14: 1744806918811238.
[7] Pfirrmann CW, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration[J]. Spine(Phila Pa 1976), 2001, 26: 1873- 1878.
[8] Masuda K, Aota Y, Muehleman C, et al. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration[J]. Spine(Phila Pa 1976), 2005, 30: 5- 14.
[9] 王 伟,全显跃. 针刺诱导椎间盘退行性变的研究进展[J]. 介入放射学杂志, 2012, 21:1049- 1053.
[10] Fazzalari NL, Costi JJ, Hearn TC, et al. Mechanical and pathologic consequences of induced concentric anular tears in an ovine model[J]. Spine(Phila Pa 1976), 2001, 26: 2575- 2581.
[11] Ohnishi T, Sudo H, Iwasaki K, et al. In vivo mouse intervertebral disc degeneration model based on a new histological classification[J]. PLoS One, 2016, 11: e0160486.
[12] Rahyussalim AJ, Zufar M, Kurniawati T. Significance of the association between disc degeneration changes on imaging and low back pain: a review article[J]. Asian Spine J, 2020, 14: 245- 257.
[13] Lamoth CJ, Meijer OG, Daffertshofer A, et al. Effects of chronic low back pain on trunk coordination and back muscle activity during walking: changes in motor control[J]. Eur Spine J, 2006, 15: 23- 40.
[14] Millecamps M, Czerminski JT, Mathieu AP, et al. Behavioral signs of axial low back pain and motor impairment correlate with the severity of intervertebral disc degeneration in a mouse model[J]. Spine J, 2015, 15: 2524- 2537.
[15] James G, Sluka KA, Blomster L, et al. Macrophage polarization contributes to local inflammation and structural change in the multifidus muscle after intervertebral disc injury[J]. Eur Spine J, 2018, 27: 1744- 1756.
[16] Hodges PW, James G, Blomster L, et al. Multifidus muscle changes after back injury are characterized by structural remodeling of muscle, adipose and connective tissue, but not muscle atrophy: molecular and morphological evidence[J]. Spine(Phila Pa 1976), 2015, 40: 1057- 1071.
[17] Hodges PW, James G, Blomster L, et al. Can proinflammatory cytokine gene expression explain multifidus muscle fiber changes after an intervertebral disc lesion?[J]. Spine(Phila Pa 1976), 2014, 39: 1010- 1017.

相似文献/References:

[1]侯钦茂,冯家烜,周 建,等.主动脉夹层动物模型构建方法研究现状 [J].介入放射学杂志,2017,(05):471.
 HOU Qinmao,FENG Jiaxuan,ZHOU Jian,et al.The establishment of animal models of Stanford type B aortic dissection: its research status[J].journal interventional radiology,2017,(09):471.
[2]管 阳,刘凤永,付金鑫,等.肝癌动物模型与介入实验操作应用[J].介入放射学杂志,2017,(11):1046.
 GUAN Yang,LIU Fengyong,FU Jinxin,et al.The establishment of animal model with liver cancer and the experimental interventional procedure[J].journal interventional radiology,2017,(09):1046.
[3]管 阳,刘凤永,樊庆胜,等.SD大鼠McA- RH7777细胞系肝癌模型构建及其特点[J].介入放射学杂志,2018,27(06):549.
 GUAN Yang,LIU Fengyong,FAN Qingsheng,et al.The establishment of SD rat McA- RH7777 cell hepatocellular carcinoma model and its characteristics[J].journal interventional radiology,2018,27(09):549.
[4]闫 磊,朱悦琦,郭 栋,等.Willis覆膜支架植入犬颈动脉梭形动脉瘤模型中远期随访观察 [J].介入放射学杂志,2019,28(07):630.
 YAN Lei,ZHU Yueqi,GUO Dong,et al.The implantation of Willis covered stent for the treatment of carotid fusiform aneurysms in canine models: mid- to- long- term follow- up observation[J].journal interventional radiology,2019,28(09):630.

备注/Memo

备注/Memo:
(收稿日期:2022- 03- 25)
(本文编辑:边 佶)
更新日期/Last Update: 2022-10-11