[1]郝伟丽,申 静,张学敬,等.主动脉弓形态与胸主动脉瘤形成相关性分析[J].介入放射学杂志,2022,31(02):135-138.
HAO Weili,SHEN Jing,ZHANG Xuejing,et al.Correlation between aortic arch morphology and thoracic aortic aneurysm formation: a clinical study[J].journal interventional radiology,2022,31(02):135-138.
点击复制
主动脉弓形态与胸主动脉瘤形成相关性分析(
)
《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]
- 卷:
-
31
- 期数:
-
2022年02
- 页码:
-
135-138
- 栏目:
-
血管介入
- 出版日期:
-
2022-02-25
文章信息/Info
- Title:
-
Correlation between aortic arch morphology and thoracic aortic aneurysm formation: a clinical study
- 作者:
-
郝伟丽; 申 静; 张学敬; 李彩英; 高不郎
-
- Author(s):
-
HAO Weili; SHEN Jing; ZHANG Xuejing; LI Caiying; GAO Bulang.
-
Department of Medical Research, Shijiazhuang Municipal People’s Hospital, Shijiazhuang, Hebei Province 050011, China
-
- 关键词:
-
【关键词】 胸主动脉瘤; 主动脉弓宽度; 主动脉弓高度; 主动脉弓角; 形态学
- 文献标志码:
-
A
- 摘要:
-
【摘要】 目的 测量胸升主动脉瘤(ATAA)、胸降主动脉瘤(DTAA)患者心脏、主动脉弓形态学参数,探讨胸主动脉瘤形成与主动脉形态学改变的相关性。方法 纳入2016年3月至2017年9月在石家庄市人民医院及合作医院接受胸主动脉CTA检查的199例患者,其中ATAA组患者46例,DTAA组患者35例,无主动脉病变正常对照组患者118例。Amira软件重建CTA图像后,分别测量心形角度,心形高度,主动脉弓宽度、高度、角度等形态学参数,比较ATAA组、DTAA组患者与对照组形态学参数的差异。结果 单因素分析结果显示,ATAA组、DTAA组弓宽和弓高均大于对照组(P<0.01),ATAA组弓角小于对照组(P=0.028);logistic回归分析显示,弓角是ATAA、DTAA发生的保护因素(b<0,P<0.05),弓宽是危险因素(b>0,P<0.01);受试者工作特征曲线(ROC)分析显示,弓宽、弓高对胸主动脉瘤形成有良好预测价值。结论 主动脉弓部形态学改变是胸主动脉瘤形成后的重要特征。弓角较大不利于胸主动脉瘤发生,弓宽、弓高可能成为胸主动脉瘤影像学诊断的预测指标。
参考文献/References:
[1] Salameh MJ, Black JH 3rd, Ratchford EV. Thoracic aortic aneurysm[J]. Vasc Med, 2018, 23: 573- 578.
[2] Yin K, Li H. Aortic aneurysm is not a rapidly expanding balloon[J]. Am Coll Cardiol, 2019, 73: 382.
[3] Swerdlow NJ, Wu WW, Schermerhorn ML. Open and endovascular management of aortic aneurysms[J]. Circ Res, 2019, 124: 647- 661.
[4] Allen BD, Barker AJ, Kansal P, et al. Impact of aneurysm repair on thoracic aorta hemodynamics[J]. Circulation, 2013, 128: e341- e343.
[5] Vasava P, Jalali P,Dabagh M. Computational study of pulstile blood flow in aortic arch: effect of blood pressure[J]. IFMBE Proceedings, 2009, 25:1198- 1201.
[6] Guzzardi DG, Barker AJ, van Ooij P, et al. Valve- related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping[J]. J Am Coll Cardiol, 2015, 66: 892- 900.
[7] Metaxa E, Tremmel M, Natarajan SK, et al. Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model[J]. Stroke, 2010, 41: 1774- 1782.
[8] Youssefi P, Sharma R, Figueroa CA, et al. Functional assessment of thoracic aortic aneurysms:the future of risk prediction?[J]. Br Med Bull, 2017, 121: 61- 71.
[9] Gao B, Baharoglu MI, Malek AM. Angular remodeling in single stent- assisted coiling displaces and attenuates the flow impingement zone at the neck of intracranial bifurcation aneurysms[J]. Neuro-surgery, 2013, 72: 739- 748.
[10] Alhafez BA, Truong VTT, Ocazionez D, et al. Aortic arch tortuosity, a novel biomarker for thoracic aortic disease, is increased in adults with bicuspid aortic valve[J]. Int J Cardiol, 2019, 284: 84- 89.
[11] Lauric A, Safain MG, Hippelheuser J, et al. High curvature of the internal carotid artery is associated with the presence of intracranial aneurysms[J]. J Neurointerv Surg, 2014, 6: 733- 739.
[12] Poullis MP, Warwick R, Oo A, et al. Ascending aortic curvature as an independent risk factor for type A dissection, and ascending aortic aneurysm formation: a mathematical model[J]. Eur J Cardiothorac Surg, 2008, 33: 995- 1001.
[13] Liu L, Wang W, Lu QS, et al. Morphology of the ascending aorta: a study on 114 Chinese patients[J]. J Intervent Med, 2018, 1: 22- 27.
[14] Chi Q, He Y, Luan Y, et al. Numerical analysis of wall shear stress in ascending aorta before tearing in type A aortic dissection[J]. Comput Biol Med, 2017, 89: 236- 247.
[15] Sugiyama H, Tohma R, Misato T, et al. Right heart failure caused by direct pressure of distal arch aneurysm[J]. Gen Thorac Cardiovasc Surg, 2019, 67: 263- 265.
[16] Investigators IT. The effect of aortic morphology on peri- operative mortality of ruptured abdominal aortic aneurysm[J]. Eur Heart J, 2015, 36: 1328- 1334.
[17] Raut SS,Chandra S,Shum J, et al. Biological, geometric and biomechanical factors influencing abdominal aortic aneurysm rupture risk: a comprehensive review[J]. Recent Pat Med Imag, 2013, 3:44- 59.
[18] Karthikesalingam A, Holt PJ, Vidal- Diez A, et al. Predicting aortic complications after endovascular aneurysm repair[J]. Br J Surg, 2013, 100: 1302- 1311.
[19] 向定成,曹惠霞,段克修,等. CT断层图像和三维重建在主动脉腔内隔绝术术前评估中的价值[J]. 介入放射学杂志, 2006,15:153- 156.
[20] Chiu P, Lee HP, Venkatesh SK, et al. Anatomical characteristics of the thoracic aortic arch in an Asian population[J]. Asian Cardiovasc Thorac Ann, 2013, 21: 151- 159.
[21] Hasegawa T, Oshima Y, Maruo A, et al. Aortic arch geometry after the Norwood procedure: the value of arch angle augmentation[J]. J Thorac Cardiovasc Surg, 2015, 150: 358- 366.
[22] Frydrychowicz A, Berger A, Munoz Del Rio A, et al. Interde-pendencies of aortic arch secondary flow patterns, geometry, and age analysed by 4- dimensional phase contrast magnetic resonance imaging at 3 Tesla[J]. Eur Radiol, 2012, 22: 1122- 1130.
备注/Memo
- 备注/Memo:
-
(收稿日期:2020- 11- 17)
(本文编辑:边 佶)
更新日期/Last Update:
2022-02-21