参考文献/References:
[1] Ryzhakov P, Soudah E, Dialami N. Computational modeling of the fluid flow and the flexible intimal flap in type B aortic dissection via a monolithic arbitrary Lagrangian/Eulerian fluid-structure interaction model[J]. Int J Numer Method Biomed Eng, 2019, 35: e3239.
[2] Grabenwoger M, Alfonso F, Bachet J, et al. Thoracic endova-scular aortic repair(TEVAR) for the treatment of aortic diseases: a position statement from the European Association for Cardio-Thoracic Surgery(EACTS) and the European Society of Cardiology(ESC),in collaboration with the European Association of Percu-taneous Cardiovascular Interventions(EAPCI)[J]. Eur J Cardiothorac Surg, 2012, 42: 17-24.
[3] Alimohammadi M, Sherwood JM, Karimpour M, et al. Aortic dissection simulation models for clinical support: fluid- structure interaction vs. rigid wall models[J]. Biomed Eng Online, 2015, 14: 34.
[4] Sun Z, Chaichana T. A systematic review of computational fluid dynamics in type B aortic dissection[J]. Int J Cardiol, 2016, 210: 28-31.
[5] Bonfanti M, Balabani S, Alimohammadi M, et al. A simplified method to account for wall motion in patient- specific blood flow simulations of aortic dissection: comparison with fluid- structure interaction[J]. Med Eng Phys, 2018: S1350- S4533.
[6] 曾宇杰,罗 坤,樊建人,等. Stanford B型胸主动脉夹层数值模拟研究进展[J]. 中华外科杂志, 2016, 54:477- 480.
[7] Qiao Y, Zeng Y, Ding Y, et al. Numerical simulation of two-phase non- newtonian blood flow with fluid- structure interaction in aortic dissection[J]. Comput Methods Biomech Biomed Engin, 2019, 22: 620-630.
[8] Campobasso R, Condemi F, Viallon M, et al. Evaluation of peak wall stress in an ascending thoracic aortic aneurysm using FSI simulations: effects of aortic stiffness and peripheral resistance[J]. Cardiovasc Eng Technol, 2018, 9: 707-722.
[9] Condemi F, Campisi S, Viallon M, et al. Fluid- and biomechanical analysis of ascending thoracic aorta aneurysm with concomitant aortic insufficiency[J]. Ann Biomed Eng, 2017, 45: 2921- 2932.
[10] 张 健,景在平. 主动脉夹层病因学分析[J]. 外科理论与实践, 2007, 12:84-86.
[11] 杜宜纲,刘德杰,沈莹莹,等. 血管壁面剪切应力的测量及其临床研究进展[J]. 中国生物医学工程学报, 2018, 37:593-605.
[12] Osswald A, Karmonik C, Anderson JR, et al. Elevated wall shear stress in aortic type B dissection may relate to retrograde aortic type a dissection: a computational fluid dynamics pilot study[J]. Eur J Vasc Endovasc Surg, 2017, 54: 324-330.
[13] Kadam A, Gersch RP, Rosengart TK, et al. Inflammatory monocyte response due to altered wall shear stress in an isolated femoral artery model[J]. J Biol Methods, 2019, 6: e109.
[14] Karmonik C, Bismuth JX, Davies MG, et al. Computational hemodynamics in the human aorta: a computational fluid dynamics study of three cases with patient- specific geometries and inflow rates[J]. Technol Health Care, 2008, 16: 343-354.
[15] Zorrilla R, Soudah E, Rossi R. Computational modeling of the fluid flow in type B aortic dissection using a modified finite element embedded formulation[J]. Biomech Model Mechanobiol, 2020, 19: 1565-1583.
[16] Armour CH, Menichini C, Milinis K, et al. Location of reentry tears affects false lumen thrombosis in aortic dissection following TEVAR[J]. J Endovasc Ther, 2020, 27: 396- 404.
[17] Dillon- Murphy D, Noorani A, Nordsletten D, et al. Multi-modality image- based computational analysis of haemodynamics in aortic dissection[J]. Biomech Model Mechanobiol, 2016, 15: 857-876.
[18] Liu X, Fan Y, Deng X, et al. Effect of non-newtonian and pulsatile blood flow on mass transport in the human aorta[J]. J Biomech, 2011, 44: 1123-1131.
[19] Tse KM, Chiu P, Lee HP, et al. Investigation of hemodynamics in the development of dissecting aneurysm within patient- specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations[J]. J Biomech, 2011, 44: 827-836.
[20] 王 亮,陆清声,冯 睿,等. DeBakey Ⅲ型主动脉夹层血流动力学数值模拟分析初步研究[J]. 介入放射学杂志, 2010, 19:683-687.
[21] Chen HY, Peelukhana SV, Berwick ZC, et al. Editor’s choice - fluid- structure interaction simulations of aortic dissection with bench validation[J]. Eur J Vasc Endovasc Surg, 2016, 52: 589-595.
[22] Baumler K, Vedula V, Sailer AM, et al. Fluid- structure interaction simulations of patient- specific aortic dissection[J]. Biomech Model Mechanobiol, 2020, 19: 1607-1628.
[23] Ergin MA, Spielvogel D, Apaydin A, et al. Surgical treatment of the dilated ascending aorta:when and how?[J]. Ann Thorac Surg, 1999, 67: 1834-1839.
[24] Svensson LG, Kim KH, Lytle BW, et al. Relationship of aortic cross- sectional area to height ratio and the risk of aortic dissection in patients with bicuspid aortic valves[J]. J Thorac Cardiovasc Surg, 2003, 126: 892-893.
[25] Evangelista A, Isselbacher EM, Bossone E, et al. Insights from the international registry of acute aortic dissection: a 20- year experience of collaborative clinical research[J]. Circulation, 2018, 137: 1846-1860.
[26] Munshi B, Parker LP, Norman PE, et al. The application of computational modeling for risk prediction in type B aortic dissection[J]. J Vasc Surg, 2020, 71: 1789.e3-1801.e3.
[27] Xenos M, Labropoulos N, Rambhia S, et al. Progression of abdominal aortic aneurysm towards rupture: refining clinical risk assessment using a fully coupled fluid- structure interaction method[J]. Ann Biomed Eng, 2015, 43: 139-153.
[28] Qiao Y, Fan J, Ding Y, et al. A primary computational fluid dynamics study of pre- and post- TEVAR with intentional left subclavian artery coverage in a type B aortic dissection[J]. J Biomech Eng, 2019,[Epub ahead of print].
[29] 孟庄源,马 韬,王盛章,等. 覆膜支架治疗主动脉夹层的有限元分析[J]. 医用生物力学, 2018, 33:326-331.
[30] Ma T, Dong ZH, Wang S, et al. Computational investigation of interaction between stent graft and aorta in retrograde type A dissection after thoracic endovascular aortic repair for type B aortic dissection[J]. J Vasc Surg, 2018, 68: 14S.e2-21S.e2.
[31] Costache VS, Yeung KK, Solomon C, et al. Aortic remodeling after total endovascular aortic repair with multilayer stents: computational fluid dynamics analysis of aortic remodeling over 3 years of follow-up[J]. J Endovasc Ther, 2018, 25: 760-764.
[32] Tomasi J, Le Bars F, Shao C, et al. Patient-specific and real-time model of numerical simulation of the hemodynamics of type B aortic dissections[J]. Med Hypotheses, 2020, 135: 109477.
相似文献/References:
[1]王 亮,冯 睿,陆清声,等.采用CT断层扫描图像构建DeBakey Ⅲ型主动脉夹层三维血流动力学数值模拟分析模型[J].介入放射学杂志,2010,(10):767.
WANG Liang,FENG Rui,LU Qing-sheng,et al.The construction of realistic 3D hemodynamic models of DeBakey Ⅲ aortic dissection by using CT images and its application in computational mimic analysis[J].journal interventional radiology,2010,(12):767.
[2]王豪夫,王曰伟,李 君,等.主动脉瘤腔内修复术一期治愈stanford A型主动脉夹层并腹主动脉瘤一例[J].介入放射学杂志,2011,(01):64.
WANG Hao-fu,WANG Yue-wei,LI Jun,et al.Endovascular aortic aneurysm repair of Stanford type A aortic dissection accompanied with abdominal aortic aneurysm: report of one case[J].journal interventional radiology,2011,(12):64.
[3]章思梦,陆清声,景在平.Standford B型主动脉夹层腔内修复术后主动脉重塑效果[J].介入放射学杂志,2016,(04):302.
ZHANG Si- meng,LU Qing- sheng,JING Zai- ping.Outcomes of aortic remodeling after endovascular thoracic aortic repair for type B Standford aortic dissection[J].journal interventional radiology,2016,(12):302.
[4]沈 毓,宋 超,辛世杰,等.远程视频会诊在支架体外开窗腔内治疗主动脉弓夹层中的应用[J].介入放射学杂志,2020,29(11):1080.
SHEN Yu,SONG Chao,XIN Shijie,et al.Application value of remote video consultation in performing endovascular repair of aortic arch dissection by using in vitro fenestration technique[J].journal interventional radiology,2020,29(12):1080.
[5]李天祎.Stanford B型主动脉夹层腔内修复术后主动脉扩张性病变的研究进展[J].介入放射学杂志,2024,33(04):443.
LI Tianyi..Research progress in aortic dilatation lesions occurring after endovascular repair of Stanford type B aortic dissection[J].journal interventional radiology,2024,33(12):443.