[1]房裕钞,王黎洲,黄学卿,等.微小RNA- 155通过Notch信号通路对脑缺血-再灌注损伤的影响 [J].介入放射学杂志,2019,28(07):661-668.
 FANG Yuchao,WANG Lizhou,HUANG Xueqing,et al.The effect of microRNA- 155 on cerebral ischemia- reperfusion injury through regulation of Notch signaling[J].journal interventional radiology,2019,28(07):661-668.
点击复制

微小RNA- 155通过Notch信号通路对脑缺血-再灌注损伤的影响

()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
28
期数:
2019年07期
页码:
661-668
栏目:
实验研究
出版日期:
2019-07-25

文章信息/Info

Title:
The effect of microRNA- 155 on cerebral ischemia- reperfusion injury through regulation of Notch signaling
作者:
房裕钞 王黎洲 黄学卿 杨登科 周 石 李 兴 蒋天鹏
Author(s):
FANG Yuchao WANG Lizhou HUANG Xueqing YANG Dengke ZHOU Shi LI Xing JIANG Tianpeng.
School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou Province 550004, China
关键词:
【关键词】 脑缺血-再灌注损伤 微小RNA- 155 Notch通路 一氧化氮 内皮型一氧化氮合酶
文献标志码:
A
摘要:
【摘要】 目的 探讨微小RNA(miR)在小鼠大脑中动脉闭塞(MCAO)所造成缺血-再灌注(I- R)损伤中的调控作用。方法 构建C57BL/6小鼠MCAO模型,采用氯化三苯四氮唑(TCC)染色和神经功能评分了解脑I- R损伤对小鼠神经功能的影响。实时定量聚合酶链反应(RT- qPCR)技术检测miR- 155表达,苏木精-伊红(HE)染色观察miR- 155对脑组织病理学的影响,伊文氏蓝(EB)和脑组织含水量检测观察miR- 155对血脑屏障(BBB)通透性的影响,一氧化氮(NO)含量和内皮型内皮型一氧化氮合酶(eNOS)表达检测评估miR- 155对血管内皮细胞功能的影响,免疫印迹法检测Notch1、Notch1胞内结构域(NICD)、Jagged1和Hes1表达, RT- qPCR检测Notch1和Hes1 mRNA水平,以明确miR- 155在Notch信号通路中的作用。结果 miR- 155缺失提高Notch1、NICD、Hes1表达,降低脱氧核糖核苷酸末端转移酶介导的缺口末端标记法(TUNEL)染色阳性细胞百分比和半胱氨酸天冬氨酸特异性蛋白酶(caspase)- 3水平;干扰miR- 155表达增加NO产生和eNOS表达,导致脑组织含水量和EB含量下调。miR- 155过度表达使所有这些改变恢复至脑I- R损伤水平。Notch1、NICD、Hes1表达减轻脑I- R损伤状态。结论 miR- 155可通过Notch信号通路阻断正常NO产生和eNOS表达,这一调控机制可能是未来缺血性脑卒中治疗潜在靶点之一。

参考文献/References:

[1] Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function[J]. Development, 2011, 138: 3593- 3612.
[2] Bray SJ. Notch signalling in context[J]. Nat Rev Mol Cell Biol, 2016, 17: 722- 735.
[3] Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants[J]. Nat Neurosci, 2005, 8: 709- 715.
[4] Sun F, Mao X, Xie L, et al. Notch1 signaling modulates neuronal progenitor activity in the subventricular zone in response to aging and focal ischemia[J]. Aging Cell, 2013, 12: 978- 987.
[5] Lecomte MD, Shimada IS, Sherwin C, et al. Notch1- STAT3- ETBR signaling axis controls reactive astrocyte proliferation after brain injury[J]. Proc Natl Acad Sci USA, 2015, 112: 8726- 8731.
[6] Pei H, Song X, Peng C, et al. TNF- α inhibitor protects against myocardial ischemia/reperfusion injury via Notch1- mediated suppression of oxidative/nitrative stress[J]. Free Radic Biol Med, 2015, 82: 114- 121.
[7] Ramasamy SK, Kusumbe AP, Wang L, et al. Endothelial notch activity promotes angiogenesis and osteogenesis in bone[J]. Nature, 2014, 507: 376- 380.
[8] Patenaude A, Fuller M, Chang L, et al. Endothelial- specific Notch blockade inhibits vascular function and tumor growth through an eNOS- dependent mechanism[J]. Cancer Res, 2014, 74: 2402- 2411.
[9] 陈 立, 邹伟婕, 张 宇, 等. miR- 29b通过抑制N2a细胞p53凋亡通路减轻氧糖剥夺/再灌注损伤[J]. 介入放射学杂志, 2018, 27: 451- 457.
[10] Li SH, Su SY, Liu JL. Differential regulation of microRNAs in patients with ischemic stroke[J]. Curr Neurovasc Res, 2015, 12: 214- 221.
[11] Choi GH, Ko KH, Kim JO, et al. Association of miR- 34a, miR- 130a, miR- 150 and miR- 155 polymorphisms with the risk of ischemic stroke[J]. Int J Mol Med, 2016, 38: 345- 356.
[12] Cerutti C, Soblechero- Martin P, Wu D, et al. MicroRNA- 155 contributes to shear- resistant leukocyte adhesion to human brain endothelium in vitro[J]. Fluids Barriers CNS, 2016, 13: 8.
[13] Wang Y, Huang J, Ma Y, et al. MicroRNA- 29b is a therapeutic target in cerebral ischemia associated with aquaporin 4[J]. J Cereb Blood Flow Metab, 2015, 35: 1977- 1984.
[14] Hara H, Friedlander RM, Gagliardini V, et al. Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage[J]. Proc Natl Acad Sci USA, 1997, 94: 2007- 2012.
[15] Del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia[J]. J Cereb Blood Flow Metab, 2003, 23: 879- 894.
[16] Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood- brain barrier[J]. Nat Med, 2013, 19: 1584- 1596.
[17] Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments[J]. Neuron, 2010, 67: 181- 198.
[18] Srivastava K, Bath PM, Bayraktutan U. Current therapeutic strategies to mitigate the eNOS dysfunction in ischaemic stroke[J]. Cell Mol Neurobiol, 2012, 32: 319- 336.
[19] Milsom AB, Patel NS, Mazzon E, et al. Role for endothelial nitric oxide synthase in nitrite- induced protection against renal ischemia- reperfusion injury in mice[J]. Nitric Oxide, 2010, 22: 141- 148.
[20] Fatini C, Sofi F, Gensini F, et al. Influence of eNOS gene polymorphisms on carotid atherosclerosis[J]. Eur J Vasc Endovasc Surg, 2004, 27: 540- 544.
[21] Atochin DN, Clark J, Demchenko IT, et al. Rapid cerebral ischemic preconditioning in mice deficient in endothelial and neuronal nitric oxide synthases[J]. Stroke, 2003, 34: 1299- 1303.
[22] Woodbury ME, Freilich RW, Cheng CJ, et al. miR- 155 is essential for inflammation- induced hippocampal neurogenic dysfunction[J]. J Neurosci, 2015, 35: 9764- 9781.
[23] Chen S, Wang L, Fan J, et al. Host miR155 promotes tumor growth through a myeloid- derived suppressor cell- dependent mechanism[J]. Cancer Res, 2015, 75: 519- 531.
[24] Liu T, Shen D, Xing S, et al. Attenuation of exogenous angiotensin Ⅱ stress- induced damage and apoptosis in human vascular endothelial cells via microRNA- 155 expression[J]. Int J Mol Med, 2013, 31: 188- 196.
[25] Huang Y, Liu Y, Li L, et al. Involvement of inflammation- related miR- 155 and miR- 146a in diabetic nephropathy: implications for glomerular endothelial injury[J]. BMC Nephrol, 2014, 15: 142.
[26] Gama- Norton L, Ferrando E, Ruiz- Herguido C, et al. Notch signal strength controls cell fate in the haemogenic endothelium[J]. Nat Commun, 2015, 6: 8510.
[27] Wang L, Zhang H, Rodriguez S, et al. Notch- dependent repression of miR- 155 in the bone marrow niche regulates hematopoiesis in an NF- κB- dependent manner[J]. Cell Stem Cell, 2014, 15: 51- 65.
[28] Kurpinski K, Lam H, Chu J, et al. Transforming growth factor- beta and Notch signaling mediate stem cell differentiation into smooth muscle cells[J]. Stem Cells, 2010, 28: 734- 742.
[29] Hofmann JJ, Iruela- Arispe ML. Notch signaling in blood vessels: who is talking to whom about what?[J]. Circ Res, 2007, 100: 1556- 1568.
[30] Holderfield MT, Hughes CC. Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor- beta in vascular morphogenesis[J]. Circ Res, 2008, 102: 637- 652.
[31] Zou S, Ren P, Nguyen M, et al. Notch signaling in descending thoracic aortic aneurysm and dissection[J]. PLoS One, 2012, 7: e52833.
[32] Yu L, Liang H, Lu Z, et al. Membrane receptor- dependent Notch1/Hes1 activation by melatonin protects against myocardial ischemia- reperfusion injury: in vivo and in vitro studies[J]. J Pineal Res, 2015, 59: 420- 433.
[33] Tu J, Li Y, Hu Z, et al. Radiosurgery inhibition of the Notch signaling pathway in a rat model of arteriovenous malformations[J]. J Neurosurg, 2014, 120: 1385- 1396. 

备注/Memo

备注/Memo:
(收稿日期:2018-07-31)
(本文编辑:边 佶)
更新日期/Last Update: 2019-07-16