[1]温凌字,陈 曦,雷 毅,等.基于形态学分析的后交通动脉瘤破裂风险评分预测模型 [J].介入放射学杂志,2018,27(10):919-923.
 WEN Lingzi,CHEN Xi,LEI Yi,et al.Morphological analysis- based prediction model for assessing the risk score of the rupture of posterior communicating artery aneurysms[J].journal interventional radiology,2018,27(10):919-923.
点击复制

基于形态学分析的后交通动脉瘤破裂风险评分预测模型 ()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
27
期数:
2018年10期
页码:
919-923
栏目:
神经介入
出版日期:
2018-10-25

文章信息/Info

Title:
Morphological analysis- based prediction model for assessing the risk score of the rupture of posterior communicating artery aneurysms
作者:
温凌字 陈 曦 雷 毅 冷 硕 赵国峰 邓 钢
Author(s):
WEN Lingzi CHEN Xi LEI Yi LENG Shuo ZHAO Guofeng DENG Gang
Department of Interventional and Vascular Surgery, Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province 210009, China
关键词:
【关键词】 后交通动脉瘤 破裂危险因素 形态学 风险评分预测模型
文献标志码:
A
摘要:
【摘要】 目的 分析后交通动脉瘤破裂的形态学因素,构建破裂风险评分模型预测后交通动脉瘤破裂风险。方法 收集2012年1月至2017年6月经脑血管造影确诊的75例后交通动脉瘤患者,其中瘤体破裂47例(破裂组),未破裂28例(未破裂组)。根据临床资料及影像学特征作单因素和多因素logistic回归分析,确定形态学相关参数,构建破裂风险评分预测模型。结果 破裂组、未破裂组动脉瘤深度(Hmax)、动脉瘤高度(Hp)、动脉瘤宽度(W)、入射夹角(IFA)、流出角(OFA)、长宽比(AR)、AR面积比、瘤体高度与宽度比(HWR)、子囊及其规则与否等动脉瘤形态参数差异均有显著统计学意义(P<0.001)。多因素logistic回归分析显示Hmax(β=1.328,OR=3.773,P=0.043)、IFA(β=0.076,OR=1.079,P=0.003)、AR(β=2.086,OR=8.055,P=0.049)为独立危险因素。根据回归系数构建动脉瘤破裂风险评分预测模型,破裂风险评分总分(R)=1.3×(Hmax)+0.1×(IFA)+2.1×(AR)。R经受试者特征曲线(ROC)分析显示ROC下面积为0.982,R=19为最佳截断值。结论 Hmax、IFA、AR值是预测动脉瘤破裂的独立危险因素。根据破裂风险评分预测模型,R>19提示动脉瘤可能破裂,R值越大破裂风险越大。

参考文献/References:

[1] Vlak MH, Algra A, Brandenburg R, et al. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta- analysis[J]. Lancet Neurol, 2011, 10: 626- 636.
[2] Kubo Y, Koji T, Kashimura H, et al. Female sex as a risk factor for the growth of asymptomatic unruptured cerebral saccular aneurysms in elderly patients[J]. J Neurosurg, 2014, 121: 599- 604.
[3] UCAS Japan Investigators, Morita A, Kirino T, et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort[J]. N Engl J Med, 2012, 366: 2474- 2482.
[4] Naggara ON, White PM, Guilbert F, et al. Endovascular treatment of intracranial unruptured aneurysms: systematic review and meta- analysis of the literature on safety and efficacy[J]. Radiology, 2010, 256: 887- 897.
[5] Wiebers DO, Whisnant JP, Huston J 3rd, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment[J]. Lancet, 2003, 362: 103- 110.
[6] Greving JP, Wermer MJ, Brown J, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies[J]. Lancet Neurol, 2014, 13: 59- 66.
[7] Zhang Y, Jing L, Liu J, et al. Clinical, morphological, and hemodynamic independent characteristic factors for rupture of posterior communicating artery aneurysms[J]. J Neurointerv Surg, 2016, 8: 808- 812.
[8] Maiti TK, Bir SC, Patra DP, et al. 158 morphological parameters for anterior communicating artery aneurysm rupture risk assessment[J]. Neurosurgery, 2016, 63: 163- 164.
[9] Nikolic I, Tasic G, Bogosavljevic V, et al. Predictable morphometric parameters for rupture of intracranial aneurysms: a series of 142 operated aneurysms[J]. Turk Neurosurg, 2012, 22: 420- 426.
[10] 傅建华, 何伟文, 王茂武, 等. 颅内囊性动脉瘤破裂形态学的危险因素分析[J]. 中国微侵袭神经外科杂志, 2014, 19: 341- 344.
[11] Lü N, Feng Z, Wang C, et al. Morphological risk factors for rupture of small(<7 mm) posterior communicating artery aneurysms[J]. World Neurosurg, 2016, 87: 311- 315.
[12] Baharoglu MI, Schirmer CM, Hoit DA, et al. Aneurysm inflow- angle as a discriminant for rupture in sidewall cerebral aneurysms: morphometric and computational fluid dynamic analysis[J]. Stroke, 2010, 41: 1423- 1430.
[13] Zheng Y, Xu F, Ren J, et al. Assessment of intracranial aneurysm rupture based on morphology parameters and anatomical locations[J]. J Neurointerv Surg, 2016, 8: 1240- 1246.
[14] Grochowski C, Litak J, Kulesza B, et al. Size and location correlations with higher rupture risk of intracranial aneurysms[J]. J Clin Neurosci, 2018, 48: 181- 184.
[15] van Donkelaar CE, Bakker NA, Veeger NJ, et al. Prediction of outcome after subarachnoid hemorrhage: timing of clinical assessment[J]. J Neurosurg, 2017, 126: 52- 59.
[16] 王 珏, 赵玉武, 李明华, 等. 多发性颅内动脉瘤破裂的危险因素分析[J]. 介入放射学杂志, 2014, 23: 1- 4.
[17] Al Matter M, Bhogal P, Aguilar Perez M, et al. he Size of Ruptured Intracranial Aneurysms: A 10- Year Series from a Single Center[J]. Clin Neuroradiol, 2017, [Epub ahead of print].
[18] 宋剑平, 毛 颖, 宋冬雷, 等. 颅内囊性动脉瘤几何特征与破裂风险的关系[J]. 中华医学杂志, 2009, 89: 732- 735.
[19] Zeng Z, Durka MJ, Kallmes DF, et al. Can aspect ratio be used to categorize intra- aneurysmal hemodynamics? A study of elastase induced aneurysms in rabbit[J]. J Biomech, 2011, 44: 2809- 2816.
[20] 李元辉, 管 生, 徐浩文, 等. 颅内≤5 mm动脉瘤破裂的危险因素分析[J]. 介入放射学杂志, 2015, 24: 97- 101.
[21] Meng H, Tutino VM, Xiang J, et al. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis[J]. AJNR Am J Neuroradiol, 2014, 35: 1254- 1262.
[22] Baharoglu MI, Lauric A, Gao BL, et al. Identification of a dichotomy in morphological predictors of rupture status between sidewall- and bifurcation- type intracranial aneurysms[J]. J Neurosurg, 2012, 116: 871- 881.

相似文献/References:

[1]王怡博,冯广森.后交通动脉瘤介入栓塞术与夹闭术疗效分析[J].介入放射学杂志,2015,(12):1095.
 WANG Yi-bo,FENG Guang-sen.Analysis of the therapeutic effect of interventional embolization and surgical clipping for the treatment of posterior communicating artery aneurysms[J].journal interventional radiology,2015,(10):1095.

备注/Memo

备注/Memo:
(收稿日期:2018-03-02)
(本文编辑:边 佶)
更新日期/Last Update: 2018-10-15