[1]刘 莹,罗院明,殷艳飞,等.动脉内流-固耦合作用下两相血流动力学数值模拟[J].介入放射学杂志,2017,(03):253-257.
 LIU Ying,LUO Yuanming,YIN Yanfei,et al.Numerical simulation of two- phase hemodynamics under the fluid- solid coupling interaction in the artery .[J].journal interventional radiology,2017,(03):253-257.
点击复制

动脉内流-固耦合作用下两相血流动力学数值模拟 ()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
期数:
2017年03期
页码:
253-257
栏目:
实验研究
出版日期:
2017-03-25

文章信息/Info

Title:
Numerical simulation of two- phase hemodynamics under the fluid- solid coupling interaction in the artery .
作者:
刘 莹 罗院明 殷艳飞 张智亮
Author(s):
LIU Ying LUO Yuanming YIN Yanfei ZHANG Zhiliang
School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi Province 330031, China
关键词:
【关键词】 两相流 流-固耦合 血流动力学 红细胞
文献标志码:
A
摘要:
【摘要】 目的 研究流-固耦合作用下左冠状动脉内一个心动周期典型时点两相血流动力学分布及红细胞分布,探索左冠状动脉粥样斑块形成与发展机制。方法 将血液视为两相流体,基于血液与血管壁间流-固耦合作用,采用计算流体力学方法对左冠状动脉内两相血流进行瞬态数值模拟,研究一个心动周期内典型时点左冠状动脉内血流分布特性,血流动力学特性参数与动脉粥样斑块形成的相互作用关系。结果 左冠状动脉回旋支远段和钝缘支近心端外侧存在低速涡流区,该区域内壁面切应力和红细胞体积分数均较小,血流流态复杂。结论 壁面切应力较小的低速涡流区易产生脂质浓度极化、大分子物质沉积,红细胞较少区域易发生缺氧,引起血管壁通透性增加和内膜损伤,激活免疫系统,导致血管壁物质累积和内膜生长,从而易诱发动脉粥样硬化斑块形成。

参考文献/References:

[1] 陈伟伟, 高润霖, 刘力生, 等. 中国心血管病报告2013概要[J]. 中国循环杂志, 2014, 29: 487- 491.
[2] Nixon AM, Gunel M, Sumpio BE. The critical role of hemodynamics in the development of cerebral vascular disease[J]. J Neurosurg, 2010, 112: 1240- 1253.
[3] Bardossy G, Halasz G. A “backward” calculation method for the estimation of central aortic pressure wave in a 1D arterial model network[J]. Comput Fluids, 2013, 73: 134- 144.
[4] 刘 莹, 章德发, 殷艳飞, 等. 颈动脉双向流固耦合模型非稳态血流数值分析[J]. 介入放射学杂志, 2015, 24: 885- 889.
[5] Filipovic N, Teng Z, Radovic M, et al. Computer simulation of three- dimensional plaque formation and progression in the carotid artery[J]. Med Biol Eng Comput, 2013, 51: 607- 616.
[6] Folsom AR, Kronmal RA, Detrano RC, et al. Coronary artery calcification compared with carotid intima- media thickness in the prediction of cardiovascular disease incidence: the Multi- Ethnic Study of Atherosclerosis(MESA)[J]. Arch Intern Med, 2008, 168: 1333- 1339.
[7] Jung J, Hassanein A. Three- phase CFD analytical modeling of blood flow[J]. Med Eng Phys, 2008, 30: 91- 103.
[8] Cebral J, Mut F, Sforza D, et al. Clinical application of image-based CFD for cerebral aneurysms[J]. Int J Numer Method Biomed Eng, 2011, 27: 977- 992.
[9] 周俊波, 刘 洋. Fluent 6.3流场分析从入门到精通[M]. 北京:机械工业出版社, 2012.
[10] Gifford SC, Frank MG, Derganc J, et al. Parallel microchannel-based measurements of individual erythrocyte areas and volumes[J]. Biophys J, 2003, 84: 623- 633.
[11] Sun A, Fan YB, Deng X. Numerical Study of Hemodynamics at Coronary Bifurcation with and without Swirling Flow[J]. IFMBE Proceed, 2010, 31: 1428- 1430.
[12] 王彦鹏. 复杂形状血管中血液两相流动研究[D]. 西安: 西北工业大学, 2007.
[13] Tsuzuki K, Hasegawa H, Ichiki M, et al. Optimal region- of-interest settings for tissue characterization based on ultrasonic elasticity imaging[J]. Ultrasound Med Biol, 2008, 34: 573- 585.
[14] 朱大年. 生理学[M]. 北京: 人民卫生出版社, 2010: 61- 69.
[15] Huo Y, Kassab GS. Pulsatile blood flow in the entire coronary arterial tree: theory and experiment[J]. Am J Physiol Heart Circ Physiol, 2006, 291: H1074- H1087.
[16]Krizanac- Bengez L, Mayberg MR, Janigro D. The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology[J]. Neurol Res, 2004, 26: 846- 853.
[17]章德发. 颈动脉斑块形成和支架内再狭窄的血流动力学研究[D]. 南昌: 南昌大学, 2015.
[18] 李亚维, 刘宏鸣, 陆瑾莉. 血液动力学因素对动脉粥样硬化形成的影响[J]. 中国老年学杂志, 2009, 29: 248- 251.

备注/Memo

备注/Memo:
(收稿日期:2016-07-06)
(本文编辑:边 佶)
更新日期/Last Update: 2017-03-14