[1]曹磊,谢 坪,顾 露,等.微小核糖核酸-205靶向调控血管内皮生长因子-A对肝癌细胞的影响[J].介入放射学杂志,2020,29(05):483-488.
 CAO Lei,XIE Ping,GU Lu,et al.The inhibition effect of microRNA- 205 on hepatocellular carcinoma cells through targeting regulation of the vascular endothelial growth factor- A[J].journal interventional radiology,2020,29(05):483-488.
点击复制

微小核糖核酸-205靶向调控血管内皮生长因子-A对肝癌细胞的影响()

PDF下载中关闭

分享到:

《介入放射学杂志》[ISSN:1008-794X/CN:31-1796/R]

卷:
29
期数:
2020年05
页码:
483-488
栏目:
实验研究
出版日期:
2020-05-25

文章信息/Info

Title:
The inhibition effect of microRNA- 205 on hepatocellular carcinoma cells through targeting regulation of the vascular endothelial growth factor- A
作者:
曹磊 谢 坪 顾 露 周 石
Author(s):
CAO Lei XIE Ping GU Lu ZHOU Shi.
Department of Radiology, Sichuan Provincial People’s Hospital, Chengdu, Sichuan Province 610072, China
关键词:
【关键词】 肝细胞癌 微小核糖核酸- 205 血管内皮细胞生长因子- A 转移
文献标志码:
A
摘要:
【摘要】 目的 探讨微小核糖核酸(miR)- 205在肝细胞癌(HCC)中的作用及其与肝癌进展的关系,以及miR- 205是否通过靶向血管内皮细胞生长因子(VEGF)- A影响肝癌细胞增殖。方法 采用逆转录- 定量聚合酶链反应(RT- qPCR)检测miR- 205在HCC、相邻正常肝组织和肝癌细胞株HepG2、HuH- 7、SMMC- 7721、BEL- 7402、人正常肝细胞株L02中的表达。RT- qPCR检测转染miR- 205激动剂和空白对照的HepG2和HuH- 7细胞中miR- 205表达。Transwell和溴化噻唑蓝四氮唑(MTT)法检测转染后肝癌细胞增殖、迁移和侵袭。双荧光素酶报告基因检测VEGF- A是否为miR- 205直接作用靶标。VEGF- A siRNA敲低分析VEGF- A表达是否为miR- 205调控HCC细胞增殖、迁移和侵袭的关键介质。结果 miR- 205在HCC组织和肝癌细胞株中表达下调。miR- 205过表达可抑制肝癌细胞增殖、迁移和侵袭。VEGF- A是HCC中miR- 205直接作用靶标,miR- 205通过靶向VEGF- A抑制肝癌细胞增殖、迁移和侵袭。 结论 miR- 205可通过下调VEGF- A表达抑制HCC生长、迁移和侵袭,这可能是未来HCC治疗的潜在靶点。

参考文献/References:

[1] 周旭林, 满沐苒, 王璐璐, 等. 肝动脉化疗栓塞联合放疗治疗中晚期肝癌疗效与安全性的荟萃分析[J].介入放射学杂志, 2019, 28: 428- 435.
[2] 龙 江, 赵 鹏, 杨晓珍, 等. 射频消融治疗中等肝细胞癌5年预后及影响因素分析[J]. 介入放射学杂志, 2019, 28: 343- 346.
[3] Zhou YM, Zhang XF, Yu F, et al. Efficacy of surgical resection for pulmonary metastases from hepatocellular carcinoma[J]. Med Sci Monit, 2014, 20: 1544- 1549.
[4] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116: 281- 297.
[5] Yates LA, Norbury CJ, Gilbert RJ. The long and short of microRNA[J]. Cell, 2013, 153: 516- 519.
[6] Li B, Liu L, Li X, et al. MiR- 503 suppresses metastasis of hepatocellular carcinoma cell by targeting PRMT1[J]. Biochem Biophys Res Commun, 2015, 464: 982- 987.
[7] Li J, Fang L, Yu W, et al. MicroRNA- 125b suppresses the migration and invasion of hepatocellular carcinoma cells by targeting transcriptional coactivator with PDZ- binding motif[J]. Oncol Lett, 2015, 9: 1971- 1975.
[8] Zheng C, Li J, Wang Q, et al. MicroRNA- 195 functions as a tumor suppressor by inhibiting CBX4 in hepatocellular carcinoma[J]. Oncol Rep, 2015, 33: 1115- 1122.
[9] Chen X, Bo L, Zhao X, et al. MicroRNA- 133a inhibits cell proliferation, colony formation ability, migration and invasion by targeting matrix metallopeptidase 9 in hepatocellular carcinoma[J]. Mol Med Rep, 2015, 11: 3900- 3907.
[10] Zhang ZQ, Meng H, Wang N, et al. Serum microRNA 143 and microRNA 215 as potential biomarkers for the diagnosis of chronic hepatitis and hepatocellular carcinoma[J]. Diagn Pathol, 2014, 9: 135.
[11] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real- time quantitative PCR and the 2(- Delta Delta C(T)) Method[J]. Methods, 2001, 25: 402- 408.
[12] Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120: 15- 20.
[13] Zhong G, Xiong X. MiR- 205 promotes proliferation and invasion of laryngeal squamous cell carcinoma by suppressing CDK2AP1 expression[J]. Biol Res, 2015, 48: 60.
[14] Niu K, Shen W, Zhang Y, et al. MiR- 205 promotes motility of ovarian cancer cells via targeting ZEB1[J]. Gene, 2015, 574: 330- 336.
[15] Jin C, Liang R. MiR- 205 promotes epithelial- mesenchymal transition by targeting AKT signaling in endometrial cancer cells[J]. J Obstet Gynaecol Res, 2015, 41: 1653- 1660.
[16] Su N, Qiu H, Chen Y, et al. miR- 205 promotes tumor proliferation and invasion through targeting ESRRG in endometrial carcinoma[J]. Oncol Rep, 2013, 29: 2297- 2302.
[17] Zhang G, Hou X, Li Y, et al. MiR- 205 inhibits cell apoptosis by targeting phosphatase and tensin homolog deleted on chromosome ten in endometrial cancer ishikawa cells[J]. BMC Cancer, 2014, 14: 440.
[18] Lei L, Huang YP, Gong WR. MiR- 205 promotes the growth, metastasis and chemoresistance of NSCLC cells by targeting PTEN[J]. Oncol Rep, 2013, 30: 2897- 2902.
[19] Bai JH, Zhu XY, Ma JQ, et al. MiR- 205 regulates a549 cells proliferation by targeting PTEN[J]. Int J Clin Exp Pathol, 2015, 8: 1175- 1183.
[20] Wang L, Shan M, Liu Y, et al. MiR- 205 suppresses the proliferative and migratory capacity of human osteosarcoma Mg- 63 cells by targeting VEGFA[J]. Onco Targets Ther, 2015, 8: 2635- 2642.
[21] Salajegheh A, Vosgha H, Md Rahman A, et al. Modulatory role of miR- 205 in angiogenesis and progression of thyroid cancer[J]. J Mol Endocrinol, 2015, 55: 183- 196.
[22] Zhang H, Fan Q. MicroRNA- 205 inhibits the proliferation and invasion of breast cancer by regulating AMOT expression[J]. Oncol Rep, 2015, 34: 2163- 2170.
[23] Zhang H, Li B, Zhao H, et al. The expression and clinical significance of serum miR- 205 for breast cancer and its role in detection of human cancers[J]. Int J Clin Exp Med, 2015, 8: 3034- 3043.
[24] Chen Z, Tang ZY, He Y, et al. MiRNA- 205 is a candidate tumor suppressor that targets ZEB2 in renal cell carcinoma[J]. Oncol Res Treat, 2014, 37:658- 664.
[25] Kim JS, Park SY, Lee SA, et al. MicroRNA- 205 suppresses the oral carcinoma oncogenic activity via down- regulation of Axin- 2 in KB human oral cancer cell[J]. Mol Cell Biochem, 2014, 387: 71- 79.
[26] Wang N, Li Q, Feng NH, et al. miR205 is frequently downregu-lated in prostate cancer and acts as a tumor suppressor by inhibiting tumor growth[J]. Asian J Androl, 2013, 15: 735- 741.
[27] Yu Z, Ni L, Chen D, et al. Identification of miR- 7 as an oncogene in renal cell carcinoma[J]. J Mol Histol, 2013, 44: 669- 677.
[28] Yamaguchi R, Yano H, Nakashima O, et al. Expression of vascular endothelial growth factor- C in human hepatocellular carcinoma[J]. J Gastroenterol Hepatol, 2006, 21: 152- 160.
[29] Miura H, Miyazaki T, Kuroda M, et al. Increased expression of vascular endothelial growth factor in human hepatocellular carcinoma[J]. J Hepatol, 1997, 27: 854- 861.
[30] Zhuang Y, Wei M. Impact of vascular endothelial growth factor expression on overall survival in patients with osteosarcoma: a meta- analysis[J]. Tumour Biol, 2014, 35: 1745- 1749.
[31] Liu Y, Zheng Q, Wu H, et al. Rapamycin increases pCREB, Bcl- 2, and VEGF- A through ERK under normoxia[J]. Acta Biochim Biophys Sin (Shanghai), 2013, 45: 259- 267.
[32] Wiszniak S, Mackenzie FE, Anderson P, et al. Neural crest cell- derived VEGF promotes embryonic jaw extension[J]. Proc Natl Acad Sci USA, 2015, 112: 6086- 6091.
[33] Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis[J]. J Clin Oncol, 2005, 23:1011- 1027.

相似文献/References:

[1]姚雪松,李 槐.不可手术切除的肝细胞癌的疗效评价标准——改良RECIST标准更可靠[J].介入放射学杂志,2012,(03):177.
 . Therapeutic evaluation criterion of inoperable hepatocellular carcinomas: modified RECIST as a more reliable standard[J].journal interventional radiology,2012,(05):177.
[2]梁茂全,苏洪英. 肝癌化疗栓塞前后甲胎蛋白变化模式的临床意义[J].介入放射学杂志,2012,(04):333.
 .The transformation pattern of serum аfetoprotein after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma: its clinical significance [J].journal interventional radiology,2012,(05):333.
[3]孙 磊,施海彬,刘 圣,等.肝细胞癌肝动脉门静脉分流形成的相关因素分析[J].介入放射学杂志,2012,(03):206.
 ,,et al.The factors related to the formation of arterioportal shunting in patients with hepatocellular carcinomas [J].journal interventional radiology,2012,(05):206.
[4]沈海洋,刘瑞宝,刘 岩,等. 肝右叶前、后段原发性肝癌TACE后VEGF及CD34的表达水平 ;[J].介入放射学杂志,2012,(06):469.
 SHEN Hai- yang,LIU Rui- bao,LIU Yan,et al. The expression levels of vascular endothelial growth factor and CD34 in residual cancerous tissues of primary hepatocellular carcinoma located at anterior and posterior segments of right lobe liver after TACE[J].journal interventional radiology,2012,(05):469.
[5]李晓峰,钱国军,张 磊,等. 微波高功率条件下消融原发性肝癌的初步研究[J].介入放射学杂志,2011,(12):974.
 LI Xiao-feng,QIAN Guo-jun,ZHANG Lei,et al.Microwave ablation with high output power for the treatment of hepatocellular carcinoma: a preliminary study[J].journal interventional radiology,2011,(05):974.
[6]彭辽河,胡晓燕,李 杰,等. 18F-FDG PET/CT显像在肝细胞癌TACE术后残留或复发病灶检出中的应用价值[J].介入放射学杂志,2012,(08):636.
 PENG Liao- he,HU Xiao- yan,LI Jie,et al. Clinical application of 18F- FDG PET/CT imaging in detecting residual lesions or recurrence foci of hepatocellular carcinoma after TACE treatment[J].journal interventional radiology,2012,(05):636.
[7]陆小华,朱小庆,茅国新.肝细胞癌相关单核苷酸多态性的研究进展[J].介入放射学杂志,2013,(06):520.
 LU Xiao? hua,ZHU Xiao? qing,MAO Guo? xin.. Hepatocellular carcinoma?蛳 related single nucleotide polymorphisms: recent advances in research[J].journal interventional radiology,2013,(05):520.
[8]姚雪松,闫 东,曾辉英,等.TACE联合索拉非尼治疗不能手术切除肝细胞癌介入治疗间隔时间的分析[J].介入放射学杂志,2014,(09):769.
 YAO Xue song,YAN Dong,ZENG Hui ying,et al.TACE combined with sorafenib for inoperable hepatocellular carcinoma: analysis of treatment interval[J].journal interventional radiology,2014,(05):769.
[9]姚雪松,闫 东,曾辉英,等. TACE联合索拉非尼治疗不能手术切除肝细胞肝癌50例[J].介入放射学杂志,2013,(05):381.
 YAO Xue? song,YAN Dong,ZENG Hui? ying,et al. Ttransarterial chemoembolization combined with sorafenib for inoperable hepatocellular carcinoma: a clinical analysis of 50 cases[J].journal interventional radiology,2013,(05):381.
[10]赵 松,陈学春,龙清云,等. 经肝动脉化疗栓塞联合射频消融治疗肝细胞癌疗效荟萃分析[J].介入放射学杂志,2013,(11):908.
 ZHAO Song,CHEN Xue? chun,LONG Qing? yun,et al. Transcatheter arterial chemoembolization combined with radiofrequency ablation for the treatment of hepatocellular carcinoma: a systematic review and Meta analysis[J].journal interventional radiology,2013,(05):908.

备注/Memo

备注/Memo:
(收稿日期:2019- 07- 01)
(本文编辑:边 佶)
更新日期/Last Update: 2020-05-22